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Abstract

In a wide and diverse range of contexts, from academic disciplines through to games and sports,
analyses of what it takes to be judged an expert have established a number of common claims. In this
paper, we identify and discuss the theoretical signi®cance of this research in relation to a formal,
computational theory of expertise (EPAM). The main thrust of our paper is the argument that the
theory both helps to identify and explain theoretical limitations on some in¯uential approaches to
computer-based tutoring, and o�ers a means of overcoming some of these. We argue that, without
`knowledge-based' models of the learning process, attempts to develop e�ective, computer-based
tutoring systems have achieved limited progress towards the goal of helping learners to construct links
between their procedural knowledge and conceptual understanding. Current knowledge-based
approaches to learner modelling need to be developed in two main directions to reach this goal. First,
they will have to integrate a theoretically sound account of the relation between perception and memory
(such as that developed within the EPAM approach) in order to build upon what has already been
achieved to date in relating processes of learning, memory and problem solving. Second they need an
extended theory of declarative (or conceptual) knowledge and its relation to procedural skills. We
illustrate how the EPAM model of expertise can be exploited towards these ends, and draw out a
number of implications for the design and current limitations of computer-based tutoring
systems. # 2000 Elsevier Science Ltd. All rights reserved.

1. The theory of expertise

Research on expertise, which has often focused on top performers in a ®eld, has uncovered a
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number of general principles and cognitive mechanisms governing the process of becoming an
expert (Chase & Simon, 1973; Chi, Feltovitch & Glaser, 1981; Ericsson, 1996). A ®rst principle
is that the achievement of expertise requires the acquisition of a large knowledge base, which
can be analysed and represented in terms of theoretical constructs such as chunks, rules and
schemata. A second holds that it takes a long time and experience to become an expert Ð
Simon's `10-year rule' is most usually taken as the best estimate. A third principle, more
contentious, is that experts do not di�er from non-experts in basic information-processing
powers, nor in their native endowments; di�ering only in the amount of `deliberate practice'
they have spent on the domain (Ericsson, Krampe & Tesch-RoÈ mer, 1993). Finally, there is
considerable evidence that experts' skills only minimally transfer from their own domain of
expertise into other areas of knowledge (e.g. Chase & Ericsson, 1982): becoming an expert in
one ®eld confers little by way of cognitive bene®ts on performance in others.
Given the amount of commitment, time and experience needed to achieve expert status,

coupled with the lack of generalisation of expertise across domains, and the limited time given
over to schooling, it follows that any aim of helping all learners to become experts in all or
even most areas of knowledge addressed in the school curriculum is unrealistically ambitious.
However, the thesis explored here is that an understanding of the processes involved in
becoming an expert have important educational implications for the design and evaluation of
computer-based learning environments. We start to explore this claim with a brief critique of a
contemporary, neo-behaviourist approach to the design of computer-based tutoring systems,
and then move to a knowledge-based tutoring system. Finally, strengths and limitations of
these two approaches are discussed in light of the EPAM theory, a theory of expertise stressing
the role of perception.

2. Modelling the learning process

Perhaps the most theoretically motivated and widely applied neo-behaviourist approach to
the design of computer-based tutoring systems is the integrated learning system entitled
SUCCESSMAKER, which derives from a mathematical approach to modelling the process of
mastery learning formulated by Suppes and his colleagues (Suppes & Zanotti, 1996). This
system is a focus for classroom-based evaluation studies overviewed in the paper by Wood,
Underwood and Avis in this volume. The process of learning in Suppes' approach is modelled
by estimating three key parameters: (a) an empirically derived, normative estimate of the
di�culty of each element or `strand' of the curriculum to be taught; (b) a summary estimate of
the initial level of each learner's current level of performance (e.g. school grade level
equivalent); and (c) an individualised measure of (current) rate of learning which is derived
from samples of each learner's recent history of task performance. These parameters are
exploited in a mathematical, Bayesian model to assess the rate at which learning is currently
proceeding. Provided that the current estimate of learning rate falls within predetermined
limits, then the learner is moved on through the curriculum. Where learning falls below the
acceptable limits, then the tutor should revisit, and o�er further tutoring, in prerequisites skills,
in an attempt to enable the learner, subsequently, to make further progress.
Neither the analysis of curriculum `strands' nor the de®nition of learning prerequisites within
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the tutoring domain are derived from the model of learning. Both are based on a priori
analyses of the knowledge domain. The learning model itself thus lacks any explicit `semantics'
or model of the knowledge domain. Further, it makes no appeal to cognitive processes such as
perception, reasoning or misconception, and involves no attempt to theorise about relations
between performance and knowledge. This is why we classify this species of approach as neo-
behaviourist, and as a model of mastery learning, rather than a knowledge-based approach.

3. Contingent correction and explanation

Even within the seemingly well structured domain of mathematics, there is ample evidence
that the relation between task performance on the one hand (e.g. the ability to solve a
problem, or the tendency to produce a particular type of error), and conceptual understanding
on the other (i.e. the knowledge which underpins the correct solution or the error), is neither
direct nor simple. For example, extensive research into children's learning of small number
addition and subtraction problems has revealed many classes of situations where what appears
to be the same `sum' involved in di�erent kinds of word problem demands di�erent conceptual
understanding for solution. For instance, where one problem involves the addition or
subtraction of elements from a single set, whilst a second involves the comparison or the
equalisation of two distinct sets, the levels of di�culty involved, and the stage at which
children come to master the two problems, can vary signi®cantly, even where, objectively, the
same numbers and a common arithmetical procedure is implicated (see Fuson, 1992, for a
thorough and analytical review of this area).
It follows from this that children often master one class of problems several years before

another, even in cases where the same procedural knowledge would seem to be called for. As a
result, success in the application of a given procedure, or being taught how to use that
procedure, in the context of one class of problems will not ensure the recognition of the
procedure's relevance nor its application when the construction of di�erent `mental models' in
response to distinct types of problem is called for. Consequently, interpreting both successful
answers and errors from the learner is problematic unless one has a psychologically valid
theory of the relations between problem type, a given learner's conceptual knowledge and their
procedural skills. Thus, the provision of contingent and useful error feedback, and the
formulation of an explanation which the learner is likely to understand, demands more from a
tutor than a check to see if the learner's action agrees with a particular answer to a problem.
This example is o�ered as a speci®c instance to illustrate the general hypothesis that where

there are one-to-many mappings between procedural performance and conceptual
understanding the theoretical interpretation and explanation for either errors or successful
actions is not simple. The complexity of the task of mapping performance measures onto a
robust model of conceptual understanding explains, we suggest, why research into the impact
of computer-based systems which have tried to help learners to correct their `buggy procedures'
(Sleeman, Kelley, Martinak, Ward & Moore, 1989) and to model learner misconceptions
(Anderson, 1987) have proved di�cult, and of limited success. If such systems are not capable
of interpreting success and error in a robust way, they cannot be expected to provide feedback,
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or give explanations, or select task experiences, which are likely to be contingent upon the
knowledge and mental state of the learner.
In principle, Suppes' approach to mathematical modelling of learning is extensible to any

curriculum analysis which meets certain criteria (e.g. analysis into strands and the availability
of norms to assess strand di�culty). For example, a curriculum model which was sensitive to
the kinds of distinctions between di�erent problem types found in word problems explored
above could be constructed, norms established and the mathematical approach applied. In this
way, it might be possible to develop learning systems which could enhance some aspects of
conceptual understanding.
Although the behavioural approach is potentially extensible in theory, we suggest that it will

prove more theoretically satisfying and practically useful in the long run to integrate an explicit
and generative account of how a learner's performance relates to their knowledge.

4. Knowledge-based approaches to modelling learning and expertise

Computer-based tutoring systems which have grown out of contemporary cognitive theory
are based on explicit models of knowledge and some important aspects of its acquisition. Since
Anderson's ACT family of cognitive theories have underpinned the most extensive and
researched applications of theory to computer-based tutoring (e.g. Anderson, 1987, 1993;
Anderson, Corbett, Koedinger & Pelletier, 1995), we take this as the paradigm case throughout
the rest of the paper.
Anderson's theory, like Suppes', does not provide a basis for curriculum design, but involves

`constructing a curriculum under the guidance of a domain expert' (Anderson et al., 1995, p.
167). However, the theory does exert strong constraints on the manner in which the curriculum
is analysed and represented. Central to ACT theory is the distinction between declarative and
procedural knowledge, and a characterisation of the process of learning as the
proceduralisation of declarative knowledge. Declarative knowledge (or `knowledge that', such
as knowing the side±angle±side theorem) comprises facts retrieved from memory, or taken
from perception (e.g. as verbal or written utterances, mathematical expressions, programming
instructions, elements of diagrams, etc.). Procedural knowledge (`knowing how', such as the
ability to use a theorem in a proof) refers to actions taken on the basis of declarative
knowledge in the service of goals. Learning involves ®nding out, through problem solving,
what procedures any declarative knowledge calls for when in pursuit of goals. A major
epistemological claim of ACT theory is the contention that human knowledge can be
decomposed and represented in terms of such `rules of the mind' (Anderson, 1993).
An analysis of curricula content expressed as a set of such rules provides the model of target

knowledge to be taught and learned. By interacting with the learner, setting problems and
monitoring performance, it is possible for a tutoring system to construct a model of an
individual learner's knowledge of the domain, also expressed as a set of production rules. A
comparison of the rule set in the learner model with that de®ning the target knowledge
identi®es the extent to which a given learner is or is not likely to have mastered curriculum
knowledge. Gaps between the two provide a source of teaching goals for the tutoring system.
The selection of problems for instruction is also constrained by the ACT theory which
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Fig. 1. Diagrammatic representation of learning in EPAM, and of how two discrimination nets can be combined.
(a) The two discrimination nets start both with a single node, called root-node; (b) Input from the environment
leads to the creation of a test; depending of the outcome of the test, a di�erent branch will be taken; (c) with

further input, both nets grow additional tests and branches; and (d) In the extended EPAM framework, nodes
within a net can be connected by semantic links and nodes between a perceptual and an motor net can be connected
by production links.
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identi®es speci®c limits acting on the cognitive capacities of the learner such that the tutor will
``only introduce new rules when the old rules have achieved a su�cient degree of strength that
they no longer interfere with the acquisition of new rules'' (Anderson, 1987, p. 456). Learner
performance in response to each new problem is monitored and the learner model is
continually updated on the basis of that performance to identify rules that have been mastered;
and so on.
Anderson argues that this conceptualisation of learning provides an explanation for, and a

means of circumventing, what Whitehead (1929) refers to as `inert knowledge'. Thus, while a
learner may be able to memorise, recall and recognise factual knowledge, if they do not also
have the necessary procedural skills to act on such knowledge in pursuit of relevant goals, then
what the learner knows remains inert. Such inertia can be overcome through problem solving;
and e�ective tutoring can support the problem-solving process by adherence to a number of
tutoring principles; principles which also converge on the analysis of tutoring derived from
research into sca�olding and contingency (see Wood & Wood, 1996, for more details of this
analysis). Quasi-experimental evaluations of tutoring systems constructed on the basis of ACT
have produced substantial evidence for signi®cant gains over conventional group teaching in
domains such as learning to programme and areas of mathematics instruction (Anderson et al.,
1995).
Anderson's theory has succeeded in achieving a theoretical synthesis and extension of

research into learning processes and memory. In the next section, we argue that to develop
more complete theories of conceptual knowledge (and to design tutoring systems which can
better support conceptual learning), we will need to further extend the knowledge-based
approach to accommodate theoretical insights into work on knowledge and perception. The
main source of these insights is research into computational models of expertise.

5. Expertise, the chunking theory and EPAM

Chase and Simon's (1973) chunking theory, one of the most in¯uential theories of expertise,
proposes that the acquisition of expertise is made possible by the construction of a large
discrimination net1 of relatively small perceptual chunks, which encode key features of the
domain. These chunks act as conditions on productions (see Fig. 1). Since the expert has built
up around 10,000 of such chunks, the chances that they will be able to assimilate, recognise
and act upon what they perceive in their domain of knowledge is high; explaining both why
experts are quick to zoom in to the key aspects of the problem at hand and how, as de Groot
(1978) put it, they virtually `see' possible solutions.
Working within the framework of adaptive production systems and learning by doing and

from examples, Zhu, Lee, Simon and Zhu (1996) have found that learning the condition side
of productions takes longer than learning the action side. They proposed that students learn

1 A discrimination net consists of a set of nodes (chunks) connected by branches, which together form a tree-like

structure. The nodes possess tests, which can be applied to check features of the external stimuli. The outcome of
each test determines which branch will be taken below a node. Once a node has been sorted to, information can be
added to it in order to represent the external stimulus in more detail.
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the relevant conditions in simple situations ®rst and that, as they move to more complex
problems, they acquire productions that include goals and subgoals into their conditions, thus
allowing them to control search. This indicates the importance of cues in conditions and the
necessity of constructing chunks of growing complexity.
The formal models which have been implemented to test chunking theory are based on the

assumption that other aspects of experts' cognitive abilities, such as the capacity of their short-
term memory, and the rate with which they can learn and memorise new chunks and
productions, are shared with non-experts. The success of these models is thus one measure of
the plausibility of the theoretical claim that expertise results from di�erences in experience
rather than talent. Another signi®cant feature of the theory, which we develop later, is the
assumption that once nodes have been created in the discrimination net they remain there and
are never forgotten. Thus, any failure to make use of past experience results not from a process
of forgetting but from the processes by which the network grows with experience. These
processes may render certain nodes in the network inaccessible, such that the fruits of
experience, though still retained, cannot be retrieved.
The most developed aspect of Simon's chunking theory lies in the workings out and testing

of the perceptual learning processes put forward to explain how the acquisition of new chunks
takes place (e.g. Simon & Gilmartin, 1973). The mechanisms underpinning these processes have
also been tested in computational, EPAM models of perception and memory designed to
explain ®ndings from a wide range of empirical investigations into phenomena in verbal
learning, memory and concept formation (see Feigenbaum & Simon, 1984; Richman,
Staszewski & Simon, 1995; or Gobet, Richman, Staszewski & Simon, 1997, for overviews).
Consequently, the proposed processes of perceptual learning and chunking have been tested
and evaluated against a wide range of empirical data. As with chunking theory, these EPAM
models are based on the assumption that chunks are encoded in a discrimination network.
When an external `object', or perceptual feature, elicits a node, learning can occur in two ways.
If the information in the node that is accessed under-represents the object (i.e. when some
aspect(s) of what is perceived about the object are novel), then new features are added to that
node. The internal representation of the object is thus elaborated and enriched. If the
information in the node that is accessed contains features that are not consistent with the
external object (e.g. where a perceived object fails to exhibit attributes which de®ne known
objects), then a new node to represent this object is created in the network (below the node
®rst accessed). Thus, as the EPAM model is exposed to an increasing amount of information
from the environment (i.e. becomes experienced), its discrimination net grows dynamically in
direct response to both the content and sequential structure of that environmental information:
EPAM is thus a self-organising system.

6. Expanding EPAM: The CHREST framework

Recently, the chunking theory and EPAM have been revised in two main ways (Gobet &
Simon, 1996, in press; Richman et al., 1995) in response to evidence showing that the proposed
model of expert memory was not su�ciently rich and robust. The changes were mainly
motivated by memory research showing that experts can store information in LTM faster than
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was proposed by the chunking theory. For example, experiments with the digit-span task
indicate that, following intensive training, individuals can encode up to about 100 digits
rapidly. Two main extensions to the theory are relevant to our current concerns. First,
mechanisms have been de®ned and implemented whereby the `small' chunks of the original
theory can now evolve into larger and more complex data structures; schemas with slots and
default values (these schemas are called templates ). Template slots are created automatically
when some information in the tests below a chunk (recall that a chunk is simply a node in the
discrimination net) recur often but with some variation in content. For example, in the case of
chess, tests may check the type of piece (the variable) placed on the same square (the constant)
on the chess board. Once a slot has been created, it is assumed that storing information in it is
a fast process. Second, experts can acquire retrieval structures deliberately, which facilitate later
encoding in the same way mnemonics such as the method of loci facilitates the memorisation
of a shopping list (see also Chase & Ericsson, 1982).
After a template has been evoked by recognition, or after a retrieval structure has been

instantiated, the slots in either can be ®lled in rapidly. This follows because the knowledge
structure (template) is already in place, and only values in slots have to be added. One
consequence of this extension is that encoding into long-term memory can be done faster than
in the original chunking theory, and this leads to a better ®t between model and data. For
example, the revised mechanisms, implemented as computer programs, account for an extensive
and detailed body of empirical data from research into expertise in domains such as the digit
span task (Richman et al., 1995) and chess (Gobet & Simon, 1996, in press; Gobet, 1998).
However, even these extensions to the original chunking theory fail to account for the

richness of experts' knowledge, and ways to further enrich the framework have been proposed
by Gobet (1996). The key idea is that, in addition to creating and connecting chunks,

Fig. 2. This ®gure illustrate an additional way with which networks can be combined (equivalence links). In learning
about electrical circuits and AVOW diagrams, EPAM combines representations for standard circuit diagrams (on
the left) with AVOW diagrams (on the right).
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productions and templates, nodes in the discrimination network can be connected by similarity
or by relational (semantic) links, thus providing mechanisms for implementing the growth of
associative memory in tandem with perceptual learning (see Fig. 1).
This extended theory Ð called CHREST, for Chunk Hierarchy and REtrieval STructure Ð

is being tested in our centre in applications to domains such as chess expertise (Gobet &
Simon, 1996; in press), young children's acquisition of both syntax (Gobet & Pine, 1997) and
vocabulary (Jones, Gobet & Pine, 1999), the balance scale task (Gobet, 1999) and learning
with Law Encoding Diagrams (Lane, Cheng & Gobet, 1999). In all cases, computer
implementations exist, and the programs carry out learning.
Two examples may illustrate our approach. In the case of language acquisition, where the

input to the model is based on empirical studies of parental speech to individual children, the
system acts as a distributional analyser of the statistical properties of the environment, picking
up patterns that recur often. In the LED case, the training input consists in the type of
instructions, diagrams and solved examples given to (human) students. The net growth
describes the acquisition and the connection of two di�erent representations in physics, the ®rst
coding electric circuits using the standard notation in physics textbooks, the second coding the
type of Law Encoding Diagrams developed by Cheng (this volume). These two nets are in turn
connected, using production links, to various drawing and problem-solving procedures (see
Fig. 2).
With respect to expertise and instruction, the aim of these models is to test rigorously several

theoretical claims. First, that linked, multiple representations are necessary to explain the
progression from the reliance upon super®cial features of the problem to the use of deep
principles, a progression often noted in the transition from novice to expert (Chi et al., 1981).
Second, that this progression naturally leads to a forward type of search, where experts start
from the givens of a problem instead of using a goal-directed mode, a phenomenon that has
been observed in several domains of expertise, such as in physics (Simon & Simon, 1978).
Within our approach, this means that they have ways to translate super®cial, perceptual
features of a problem into deep-level features, either through productions or through
conceptual knowledge, and then use these features as conditions of productions. This is both a
question of having more knowledge (principles of physics richly interconnected both together
and with perceptual cues) and a better organised knowledge (links between representations).
In these applications, learning occurs through the application of simple mechanisms which

use the information from the environment in a goal-directed manner. While the idea of
associative memory is an old idea going back to Aristotle, we believe that these computer
implementations, which are continuously growing procedural and declarative knowledge from
a dynamically evolving discrimination net, take the idea and extend it in ways that have shed
fresh light on the learning process and revealed new explanatory power in such associative
mechanisms. In related research, Landauer and Dumais (1997) have demonstrated how the use
of powerful computer resources proves that associationist mechanisms can go a long way in
explaining semantic aspects of human memory and cognition.
Although the extended EPAM framework does not yet o�er the computational intelligence

and computing facilities of systems such as Soar (Newell, 1990) and ACT (Anderson, 1993), we
will claim that the framework, which emphasises the role of perceptual memory more than
these two systems, complements them in the aim of developing a good candidate for a formal
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model of expertise and of children's acquisition of expertise. It is promising for the study of
expertise (Gobet, 1998) because (a) it o�ers a combination of perception, learning, problem
solving and attention; (b) it keeps the strengths of the chunking theory, which accounts for
many data in the literature, while removing its weakness with the addition of the concept of
template; and (c) its computer implementation is already able to simulate a large number of
phenomena in expertise research.
The framework is also promising for the study of children's learning, because (a) again, it

o�ers a combination of perception, learning, problem solving and attention; (b) it embodies the
view that learning in school can be seen as a type of acquisition of expertise, a view that has
gained support in recent years (Wood, 1998a); (c) empirical data on children's learning are
consistent with chunking theory (e.g. Chi, 1978; Opwis, Gold, Gruber & Schneider, 1990). The
implications of this framework for the design of tutoring systems is the focus of the next
sections.

7. Theories of learning, the design of learning environments and theoretical limits on computer-
based tutoring

The earlier papers in this special edition have a shared concern with trying to formulate
principles for the design of computer-based learning environments and the development of
methodologies for their empirical evaluation. We are also concerned with the nature and
evaluation of such principles, but evaluation here rests on conceptual and theoretical analysis
rather than empirical evidence. The main aims are to explore theoretical limits on what we can
achieve in the task of learner modelling in the context of computer-based tutoring. Since the
nature of the learner model de®nes limits on the pedagogical goals of such systems, this
exercise also provides a strategy for trying to identify what we might and might not expect to
achieve with such tutors in supporting learning.

8. Procedural skills and conceptual knowledge

Given the arguments we have put forward about the need for a knowledge-based approach
to the design of learning environments, it follows that epistemological questions about how we
should conceptualise the nature of knowledge, and its external and internal representation, are
crucial to system design and evaluation. Here, we focus on an epistemological question which
divides contemporary cognitive theories of knowledge; the distinction between declarative and
procedural knowledge. We then try to demonstrate how the positions taken on this
epistemological question lead to signi®cant implications for issues of curriculum development
and tutoring.
The distinction between declarative and procedural knowledge has long aroused controversy

in educational theory (Hiebart and Carpenter, 1992, p. 77�). The position taken by the ACT
theory on this question is explicitly and succinctly put forward by Anderson et al. (1995, p.
169; our emphasis in italics):
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``The ACT theory distinguishes between declarative knowledge . . .and procedural
knowledge . . .The assumption of the theory is that goal-independent declarative knowledge
initially enters the system in a form that can be encoded more or less directly from observation
and instruction. Cognitive skill depends on converting this knowledge into production
rules . . .which represent procedural knowledge . . . the theory assumes that production rules can
only be learned by employing declarative knowledge in the context of problem-solving activity.''

The ACT theory is thus clear that knowledge is ®rst acquired declaratively, and then
translated into a procedural form, as we outlined above. What is lacking in ACT, we believe, is
(a) provision for knowledge acquisition without the declarative stage and (b) a more explicit
account of the nature of the mechanisms allowing declarative knowledge to be constructed and
structured.

Evidence from research on implicit learning (e.g. Reber, 1993) indicates the possibility of the
acquisition of procedural knowledge without a declarative stage. It follows from this that,
through such `implicit' learning, knowing how can predate knowledge that. The controversy
surrounding this issue is confused and confusing, however. Anderson rejects some critics of the
ACT position on the grounds that evidence which shows that people can know how to do
things without being able to verbalise that knowledge, taken by some as evidence against the
view that the declarative predates the procedural, is irrelevant (Anderson & LebieÁ re, 1998, p.
109�). Conscious awareness of declarative information (such as, for example, that portrayed in
a diagram or a mathematical expression) in the course of acquiring productions does not, of
necessity, entail the ability to verbalise that declarative knowledge later. However, irrespective
of where one stands on this issue, the fact is that the nature of declarative knowledge (e.g.
what the learner attends to and perceives as they look at a diagram) is at least under-speci®ed
in the current versions of ACT theory.

In our extended EPAM framework, perceptual chunking, the creation of productions and of
schemas occurs implicitly. Declarative knowledge may serve to generate goals (i.e. such as
learning the procedural implications of declarative knowledge in context) and may direct
attention to features of the environment, as it does in ACT, but within EPAM, attention may
be directed in other ways as well, as by internal goals. This being the case, unless a computer-
based tutor is able to infer these goals, the probability that any attempt they make to sca�old
learning will prove contingent on learner knowledge is minimal.

Because, in ACT, both declarative and procedural information are encoded by the modeller,
the theory is silent about how declarative knowledge such as schemata (as opposed to rules) is
or should be learnt. Our framework, which also emphasises the acquisition of rules, makes it
clear that nodes in the discrimination net should also be connected by semantic links. In this
framework, a node reached by discrimination may lead to another node by following semantic
links. Thus, not only the possession of some element of declarative knowledge, or node,
matters, but also (a) the richness with which this node is indexed, and (b) the density of nodes
to which this node is connected. These two aspects give some computational meaning to
`conceptual understanding' as a richly connected network of links connecting productions and
schemas, that is accessible through perceptual chunks. This de®nition dovetails well with
Baxter and Glaser's (in press) characterisation of experts' knowledge, in which ``a well-
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connected knowledge structure links concepts and processes with conditions under which those
concepts and processes should be used''.

9. Multiple representations

As Cheng and Ainsworth argue in this special issue, multiple representations play an
important role in the acquisition of knowledge, although the learning contexts under which this
holds true are unclear. In ACT, multiple representations are encoded implicitly in rules, and
the theory o�ers no way of exploring and testing hypothesis about the nature of any relations
between multiple representations, declarative/procedural knowledge and performance. Within
the CHREST model of Law Encoding Diagrams outlined above, multiple representations may
sometimes prove useful in supporting the achievement of enhanced, domain-relevant
knowledge structures when, at other times, they simply take up learner e�ort without
bene®ting subsequent performance.
Having multiple representations has the advantage of increasing the probability that at least

one will prove to be computationally e�cient (cf. Larkin & Simon, 1987). However, ®nding the
right representation requires two things: (a) the presence of this representation as well as the
procedures associated to it; and (b) an e�cient indexing of this representation, either through
perceptual cues or through semantic links. Learning two types of representation without
smooth indexing mechanisms imposes a heavier load on learning without the advantage of
being able to use them. Learning e�cient links between two types of representation without
tuning the procedural utility of these representations is also ine�cient Ð a sort of inert
knowledge, to use Whitehead's phrase.
In our framework, learning multiple representations implies both the acquisition of several

subnets, partially duplicating information in di�erent format, and the need to create links
connecting the nodes from these subnets. While this redundancy may be a key feature of
conceptual understanding, and while there is strong evidence that experts do indeed encode
information redundantly (e.g. Richman et al., 1995), there is no doubt that the amount of
information to acquire increases substantially in comparison to a single type of representation.
Thus, learning multiple representations imposes an heavier learning toll on the students, may
require a `critical mass' to be usable, and may therefore turn out to be useful only in the long
term.

10. Theories of knowledge and the design of task sequences

For ACT tutors, ``nothing about problem sequence is special, except that it is important to
minimise the number of new productions to be learned simultaneously. We have done only a
little exploration of problem sequence . . . but so far have gotten null results, consistent with the
ACT theory'' (Anderson, 1987, p. 457). What matters on this account is su�cient exposure to
productions for learning to take place, not the order with which the learning sequence is
structured. The prediction that sequential order in learning is of such minor signi®cance
follows directly from the `¯at', modular way with which productions are encoded in ACT. This
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view of sequential e�ects on learning stands in direct contrast to what follows from the EPAM
theory, where the potential for hierarchical structures in perceptual and declarative knowledge
arise as a natural consequence of the way in which their learning mechanisms work.
To put it boldly, EPAM implies that it is possible to acquire knowledge in a `wrong' order

(relative to a speci®c set of task demands) and that this has marked, negative e�ects on both
the extent to which learning supports future performance and further learning (see Gobet &
Lane, in press, for computational support of this claim). For EPAM, the impact of initial
learning on the ease of subsequent learning is considerable. Exposure to a domain-

Fig. 3. E�ect of sequencing of curriculum. In the case of a `poor teacher', the learner's attention is not directed to
important features of the environment (the g attribute in the ®gure), which leads to a relatively ine�cient network.
In the case of a `good teacher', the discriminative features are learned ®rst, leading to a more e�cient network.
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inappropriate learning sequence will lead to the construction of a poorly structured and
ine�cient discrimination net, hence to ine�cient indexing of knowledge, and a consequent high
chance of failure to retrieve that knowledge when the demands of the domain require it. In
addition, this suboptimal knowledge will propagate through the net, because the chunking
mechanisms in EPAM construct knowledge recursively from smaller chunks. Thus, the
negative e�ects of poor task sequencing early on in learning will be cumulative. The
recognition of task relevant knowledge will be slower in a poorly structured than in a well
structured net. Since the basic EPAM recognition processes recur thousands of times during,
say, the attempt to solve an algebra problem, the summative impact of such micro-level
di�erences in the ability to access memory (and, hence, to bene®t from past experience) is
considerable. Indeed, such di�erences in powers of recognition lie at the heart of di�erences
between expert and novice performance.

A second consequence of an inappropriate learning sequence is that the non-optimal
organisation of the net may lead to certain important connections between nodes (both
through production links and similarity links) being missed, and with them e�cient solutions
to the problem at hand. Repairing the consequences of a suboptimal curriculum order will be
costly. First, a complete, more e�cient subnet has to be grown, not only a few nodes changed,
as is the case in learning with an e�ciently structured net. Any further learning is also unlikely
to eradicate the e�ects of suboptimal knowledge entirely, since nodes are never lost and the
nodes encoding such `poor' knowledge may distributed over the whole EPAM net. A third
consequence is that erroneous information may be stored in the net, which can lead to a
propagation of errors during performance.

Fig. 3 illustrates one possible e�ect of the sequencing of the curriculum. Let us assume that
feature g is highly diagnostic in the domain, although this may not be obvious for the non-
expert. In the upper part of the ®gure, the network has been trained without being giving
information about the value of g. As can be seen, less useful tests may be learned (in one case,
both a and b) before g is learnt. This has the consequence that (1) the g-test has to be learnt
several times Ð a waste of learning time; and (2) unimportant tests have to be carried out,
with the risk of error increasing.

Issues of task sequencing also emerge in relation to the design of curriculum breadth. In the
simulations we are carrying out in chess, language acquisition and acquisition of multiple
representations in physics, the formation of templates and of similarity links is a function of
the variety of test links below a node. Without enough variety, neither templates nor similarity
links can be created. If the theory is correct, this would suggest that learning in such a way
that only a narrow range of problems is experienced in the early stages can impede the creation
of well connected and integrated knowledge and inhibit future learning. Critical evaluations of
approaches to mathematics instruction suggest that the envisaged, negative impact of an overly
narrow curriculum on future learning is a real one, at least in mathematics. ``If, from the
beginning . . .children were exposed to a rich range of addition and subtraction situations, if
understanding and solving these situations in several di�erent ways were emphasized, and if
materials to support alternative solutions were provided and discussed, children might be able
to understand considerably more than they do in the present, impoverished, narrow classroom
environment'' (Fuson, 1992, p. 262).
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11. Self-explanation and zone of proximal development

Self-explanation has recently been heralded as a key phenomenon in learning (Chi,
DeLeeuw, Chiu & LaVancher, 1994). In our approach, self-explanation a�ects learning in that
it encourages the learner to pay attention to important aspects of the domain and to allow
enough time for learning them. It also helps because self-explaining forces one to process a
topic deeply, allowing the creation of similarity links, which, in turn may later on be used as
retrieval cues (e.g. Ericsson & Kintsch, 1995). Finally, self-explanation allows con¯icts and
failures of comprehension to emerge and, maybe, to be resolved (Renkl, 1997). These con¯icts
may direct attention to important feature of the domain. But note that self-explanation can be
detrimental as well: self-explaining incorrectly will lead to the learning of irrelevant or
misleading knowledge, which may interfere with the acquisition of correct knowledge. Thus,
the teaching environment should optimise, perhaps through feedback, the moment when
students generate self-explanations. (Knowing when to generate explanations and when to
simply learn from the textbook may also be a skill that students have to acquire, although our
framework has little to say about this question.)
Related to self-explanation is the question of zone of proximal development (or, to use van

Geert's (1983) phrase, ``the zone of proximal attention''). In our framework, such zones may
be de®ned as the moment in the learning process where additional knowledge ®ts `naturally'
into the current knowledge state. By `naturally', we mean that adding a new piece of
knowledge (i.e. a set of nodes and links connecting them) will lead to an elaboration of the net
that will be useful in the acquisition of further knowledge and its use. An `unnatural' addition
of knowledge amounts to knowledge that will hamper further learning and possibly impair
performance. Again, what human and arti®cial tutors have to anticipate is when to provide
additional information.

12. Using cognitive models to pre-evaluate curricula

The future of cognitive models in education will be in the evaluation and re®nement of
educational ideas and methods in arti®cio, with a high probability of being correct, before
testing these ideas and methods in vivo, with the expensive methodology that the latter implies.
For example, curricula on teaching Law Encoding Diagrams can be tested ®rst using our
computational model, improved, and tested again. This cycle can be carried out several times,
much more rapidly than when human learners are used. Such an approach, where the goal is
to improve a product and test its sensitivity to parameter changes, is common in engineering
sciences, but is still rare in education (Suppes & Zanotti, 1996) where hypothesis-testing
approaches still dominate research (Grant, 1962).

13. Some implications for principles of tutoring

The implications of this theory for the design of e�ective tutoring systems are profound. The
constraints and demands that will have to be satis®ed in order to develop such systems on the
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basis of the EPAM theory are far more severe than those which constrain tutors based on
ACT. An EPAM tutor would have to possess the capacity to monitor and model both the
presence or absence of productions (which the ACT tutors do) and the perceptual cues that
elicit productions (which ACT tutors cannot do). It would also need to model the way in
which, for a given learner, concepts are connected to these perceptual cues and to other
concepts. Thus, such a tutor should be able to keep track not only of a student model of
procedural knowledge, but also of a student model of conceptual and perceptual knowledge.
Although techniques have been developed to solicit and model the structure of conceptual
understanding in the ®eld of `knowledge acquisition' (cf. Shadbolt & Burton, 1990), which
could, in principle, be used to assess conceptual understanding in a tutoring context, the task
of integrating and exploiting these techniques in the context of computer-based tutors has not
been attempted, to the best of our knowledge.
A key assumption in EPAM and in our extended EPAM framework is that the acquisition

of knowledge (the augmentation of the discrimination net) depends on the way attention is
directed to the environment. We speculate that the role of coaches and of teachers is to direct
attention to the right features. Why does attention matter in the creation of the discrimination
net? It matters because, being a self-organising system, EPAM develops both as a function of
its current state and of the input of the environment. Hence further learning will build on
previous learning. If this previous learning is ine�cient, perhaps because it rests on attention to
irrelevant features of the environment, later performance will be hampered, and relocating
learning into a `correct' trajectory will require a massive and costly restructuring of knowledge.
Feedback during learning will help the student to focus upon the relevant features of the
environment. Here, our framework makes a rather stronger prediction than ACT that not only
productions should be acquired, but also that the conditions and actions of these productions
should be organised in an `e�cient' way.
The task of modelling and supporting learning in the EPAM/CHREST framework (or in

any other computer tutor designed to promote declarative/conceptual learning) will require a
far more powerful technology than we currently possess. Perhaps Anderson is making a wise
strategic choice in assuming that all procedural knowledge has to originate from declarative
knowledge, as this o�ers him a way to control and monitor when the tutoring environment
transmits new knowledge to the learner. However, if the EPAM view is correct, the ability of
such models to support the process of implicit learning and the acquisition of perceptual and
conceptual knowledge is, in principle, severely limited. And if this is true, then any pedagogical
support for such processes which need to be provided will lie outside the competence of
currently foreseeable generations of computer-based tutors.

14. Conclusion

Our attempt to articulate what we have achieved, and may hope to achieve, with computer-
based tutors provides both a context for evaluating the scope of the theories about learning
which underpin system design and a means of etching out their potential role in the wider
educational enterprise. Many competencies shown in sca�olding by human tutors Ð such as
monitoring what the learner is likely to be paying attention to, drawing attention to features
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that have been overlooked, or whose signi®cance the learner does not appreciate Ð have yet to
be su�ciently well understood, formalised or implemented in computer-based systems. We
have explored, albeit brie¯y, some of the theoretical reasons why we think that such sca�olding
functions play an important role in tutoring and learning. To the extent that these reasons are
sound, it follows that computer-based tutoring systems are currently incapable of supporting a
set of important tutoring functions and the learning which they serve. Similarly, our ability to
assess and model conceptual knowledge and, hence, to provide help, advice and task
experience which are contingent upon that knowledge, is still extremely limited. Here, too,
where pedagogical support is necessary to support learning, then computer-based systems will
be of little help until there have been considerable theoretical advances in our ability to
formalise such aspects of knowledge and technical advances which enable such formalisms to
be built into usable and e�ective computer-based learning environments.
We have also considered the implications of competing theories for issues of task sequencing

which are central to the search for principles of curriculum design. In addition to identifying
fruitful areas where we might seek to make empirical evaluations of the theories, this exercise
also serves to underline the general case that the adoption and use of such systems involves
taking on certain epistemological commitments. Conceptual evaluation provides one means of
articulating, and opening up to debate, issues about the value, roles and place of the
technology in education.
Although we have been preoccupied with trying to ®nd the limits on what we might hope to

achieve with computer-based tutors, it does not follow that we have done so in the belief that
such systems have no educational contribution to make or role to play. In terms of guiding
learners in practices designed to support the acquisition and extension of procedural skills, for
example, systems such as those based on ACT theory have already demonstrated their practical
value. Key educational issues, as Anderson and his colleagues acknowledge, now revolve
around practices we need to develop in order to embed the use of such systems successfully
within the classroom. ``Teachers seem to require some time in the classroom before they
appreciate the `tutor as teaching assistant' model and can use it to its maximum potential''
(Anderson et al., 1995, p. 201). However, we would also add that one way in which we can
seek to realise this potential is by trying to articulate and to understand the limits on what
such systems can currently hope to achieve. By trying to ``identify any gaps between what the
system has to o�er and what is needed to support learning generally we can start to outline the
possible roles that teachers may have to play in integrating the use of systems alongside their
other practices'' (Wood, 1998b p. 36).
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