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Complex mathematical problem solving was examined in 2 studies using an
episode from The Adventures of Jasper Woodbury. Each episode in the Jasper
series consists of a narrative story that ends with a complex challenge that students
are to solve. Solving the challenge involves formulating subproblems, organizing
these subproblems into solution plans, differentiating solution-relevant from
solution-irrelevant data, coordinating relevant data with appropriate sub-
problems, executing computations, and deciding among alternative solutions.
The episode examined in these studies was The Big Splash. The challenge is to
construct a business plan for a booth at a school fun-fair fund-raiser. This article
reports the results of using a technique that we developed for analyzing complex
problem solving: solution-space analysis. In Experiment 1, the performances of
6th-grade and college students solving the problem under think-aloud instructions
are compared. Relative to 6th-grade students, college students were more likely
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to generate solution attempts and correct solutions and to consider multiple-solution
plans. Both groups of students were highly accurate in generating important subgoals.
They were equally unlikely to evaluate time and money constraints involved in the
solution. In Experiment 2, dyads of 5th graders solved the same problem as in
Experiment 1, with instructions to work together to reach a solution. The solution-
space analysis was augmented by a focus on the argumentation processes manifest
in the problem solving of the dyads. Among the dyads, more successful problem
solving was associated with more coherent argument structures in the problem-solv-
ing dialogues. Coherence was reflected in (a) goals giving rise to attempts, (b)
attempts giving rise to new goals, and (c) goal-appropriate calculations. In addition,
many of the dyads in Experiment 2 explored multiple-solution paths. Discussion
focuses on characteristics of problems that make solutions difficult, the kinds of
reasoning that dyadic interactions support, and considerations of instructional envi-
ronments that would facilitate the kinds of problem-solving and reasoning processes
associated with coherent solutions.

In recent years, policy makers, as well as educational researchers, have emphasized
the need to foster instructional programs that enhance the development of thinking
and problem-solving skills within specific subject domains (American Association
for the Advancement of Science, 1989; Cognition and Technology Group at
Vanderbilt [CTGV], 1990; Glaser, 1994; Resnick, 1989; Voss & Means, 1991).
Such trends in educational reform reflect a shift in theoretical viewpoints away from
the view that learning is the accumulation of facts and associations. Increasingly,
educators have come to view learning as a constructive activity in which knowledge
is interpreted, structured, and adapted to new situations—with the assumption that
all learning revolves around thinking (Resnick, 1989).

Consistent with this view of learning, research on problem solving and expertise
has demonstrated that the development of expertise is not so much a function of
the application of general heuristic strategies (Newell & Simon, 1972) as it is the
acquisition of principled, structured knowledge (Chi, Glaser, & Farr, 1991) coupled
with the concomitant development of self-regulatory and monitoring skills (Glaser,
1991). In contrast to novices, experts characteristically develop rich problem
representations, reason more effectively within their domain, and are more facile
at acquiring related knowledge (Glaser, 1994; Resnick, 1989; Voss, 1991; Voss,
Blais, Means, Greene, & Ahwesh, 1986). These findings suggest that, if we want
students to move successfully from novice to higher levels of performance, we need
to create instructional environments wherein facts, algorithms, or concepts do not
lie inert (Whitehead, 1929) but rather become integrated, applied, and put to
effective use.

Faced with the challenge of constructing meaningful thinking environments that
promote understanding, researchers have increasingly begun to reemphasize the
importance of viewing knowledge as a tool to be used in meaningful ways (Dewey,
1933) and of viewing learning as being essentially a social activity (Vygotsky,
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1934/1986). Such conceptualizations have prompted researchers to devise class-
room-centered studies in which students are provided with meaningful activi-
ties—that is, authentic tasks and materials in which students are encouraged to work
in a collaborative or an apprenticeship fashion (Barron et al., 1995; Brown, Collins,
& Duguid, 1989; CTGV, 1990, 1991, 1992, 1993, 1994, 1997; Lamon et al., 1996;
Palincsar & Brown, 1984; Scardamalia & Bereiter, 1991; Secules, Cottom, Bray,
Miller, & The Schools for Thought Collaborative, 1997).

In the area of mathematics research in particular, several classroom-centered
studies have been designed in which students are engaged in collaborative problem
solving in an effort to develop mathematical understanding (Lampert, 1986; Mason,
Burton, & Stacey, 1982; Schoenfeld, 1985, 1987). In these studies, students actively
engage in problem-solving activities in which problem solutions are not presented
but rather proposed, defended, and negotiated. In the work of Lampert, for example,
efforts to promote understanding of the mathematical principles underlying multi-
plication are centered in instructional environments in which the teacher and the
students engage in purposeful activities. The students are encouraged to construct
meaningful relations between quantities, to invent numerical procedures, to gener-
ate numerical representations, and, all the while, to provide rationales for the
hypotheses they generate.

Establishing learning environments such as Lampert’s (1986) is a long-term
process that depends on a teacher who is astute about both pedagogy and mathe-
matics (Heaton & Lampert, 1993). Recent assessments indicate that many teachers
are ill-prepared to create these kinds of environments (e.g., Ball & Rundquist, 1993;
Cobb, Wood, Yackel, & McNeal, 1992; Peterson, Carpenter, & Fennema, 1989;
Peterson, Fennema, & Carpenter, 1991; Peterson, Fennema, Carpenter, & Loef,
1989; T. Wood, Cobb, & Yackel, 1992) and that it often takes several years of
observation and reflection for teachers to effect fundamental changes in their own
pedagogy (Ball & Rundquist, 1993; Heaton & Lampert, 1993). Part of the problem
in creating environments that promote mathematical understanding is having
materials that afford the kinds of discussions and challenging problems that engage
students. Another equally important problem is having the knowledge of mathe-
matics necessary to guide discussions in classrooms such as Lampert’s. The
approach that we have taken to the materials issue is to create video-based materials
that pose complex situations and problems for students to solve (CTGV, 1990,
1991, 1992, 1993, 1994, 1997). The Adventures of Jasper Woodbury poses complex
problems that involve mathematical problem solving. When these videos are used
in the classroom, they enable certain kinds of activities but by no means assure that
the activities will take place (CTGV, 1991, 1993, 1994; Goldman & CTGV, 1991;
Van Haneghan et al., 1992). (Although we do not discuss it here, we are currently
using these materials to create contexts for deepening teachers’ understanding of
the mathematics involved in the episodes. Initial efforts in this direction are
discussed in Barron et al., 1995.)
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Studying the development of generative knowledge and problem solving in
complex problems poses a set of interesting challenges. First, there are few
conceptualizations of complex problem solving beyond the enumeration of general
processes and activities (e.g., see Fay & Klahr, 1996). Second, ways must be devised
to measure the underlying processes that take place as children move through these
complex problem spaces. Thus, as Greeno (1986) pointed out in response to
Lampert’s (1986) work, we need to develop more detailed analyses of the process
and content knowledge that students acquire, which will enable success in mathe-
matics learning. Previous results indicate that there is a considerable difference
between successful performance on well-structured math problems, such as two-
digit calculations, and successful performance on complex math problems, such as
those presented in the Jasper series (CTGV, 1992, 1993, 1994, 1997; Goldman &
CTGV, 1991; Van Haneghan et al., 1992).

Solutions to Jasper problems involve multiple goals that have a hierarchical
structure, numerous constraints, multiple-solution options, and multiple-solution
paths. Some of the cognitive processes involved in solving Jasper problems
include formulating the subproblems needed to solve the overall problem,
organizing the subproblems into solution plans, coordinating relevant data with
appropriate subproblems, distinguishing relevant from irrelevant data, formulat-
ing computational procedures to solve subproblems and the overall problem, and
determining the feasibility of alternative plans. Traditional school environments
produce students who are ill-prepared to solve problems requiring the coordi-
nated use of such processes; presumably because of this, Jasper problems are
difficult to solve. For example, when college students individually attempted to
solve two of the Jasper trip-planning problems, they dealt adequately with only
about 60% of the solution space, often failing to optimize their solution by
considering multiple alternatives (CTGV, 1993, 1994; Goldman & CTGV,
1991). Middle school age students who score extremely well on standardized
mathematics achievement tests (90th percentile and above) also have difficulties
similar to those of college students. In addition, middle school age students
experience difficulties' (a) determining the data that are relevant to solving
particular subproblems and (b) successfully formulating computational proce-
dures for such subproblems.

Because individuals have so much difficulty solving these problems, they
provide an interesting context for collaborative problem solving. Triads of 11- and
12-year-olds solving the same trip-planning problem included more of the elements
of the problem-solving space in their solutions than did the previously mentioned
college students and high-achieving sixth-grade students (Barron, 1991). Although
Barron’s research provided no analyses of the processes enabling collaborative
groups to perform better than individuals, she speculated that the interactions
among the members of the triad would predict individual differences among the
groups. Several studies support this speculation (Goldman, Cosden, & Hine, 1992;
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Hine, Goldman, & Cosden, 1990; Webb, 1989; Webb, Ender, & Lewis, 1986). In
the mathematics area, Webb (1989, 1991) indicated that, when dyad members can
provide meaningful explanations to their partners, problem-solving performance
improves over individual performance.

A second possibility with respect to why individuals solving the trip-planning
problems failed to consider multiple plans—and thereby a higher proportion of the
problem solution space—concerns the semantics of the trip-planning problems.
Solvers may have felt that, once they had a solution, they had met the requirement.
A different problem domain might have made more salient issues of optimization
and the need to evaluate alternative plans. Specifically, business plans often present
multiple options and comparative analyses. By their very nature, business plans
‘involve optimization. That is, alternative plans are often feasible but carry different
levels of cost and risk. Frequently, these factors must be weighed against one
another, as in cost-benefit comparisons.

The research reported in this article describes two studies of complex problem
solving in the context of one Jasper business-planning adventure, The Big Splash.
The primary purpose of Experiment 1 was to examine whether individuals solving
complex problems in this domain experienced difficulties similar to those experi-
enced when solving trip-planning problems. Optimization was of particular interest,
including feasibility and alternative plan consideration because these issues are
more explicitly part of business planning than of trip planning. In Experiment 1,
individuals produced think-aloud protocols while solving The Big Splash. We
interpret performance in the individual situation as a baseline or benchmark that
can be used to index performance by other students or under different task
circumstances. As in our earlier studies (CTGV, 1994, 1997; Goldman & CTGYV,
1991), the verbalizations tended to describe the goals and data students were
considering but provided relatively limited information about the reasoning and
decision-making processes that they were using.

In Experiment 2, we had dyads cooperatively solve The Big Splash. We stressed
with students the need to talk to one another in order to cooperate on a solution.
We expected that the students’ interactions would produce information that could
be used to chart their explorations of the solution space in a more complete way
than was possible with the individuals® verbalizations. Our goal in Experiment 2
was to understand the nature of the argumentation and reasoning processes associ-
ated with different solution outcomes. Due to pragmatic constraints on the students’
available time, we focused students on the part of the problem concerned with
expenses and profit. (In Experiment 1, students focused on revenue, expenses, and
profit.) Although we recognize that these task differences preclude our making
definite claims about the effects of working in dyads relative to individuals, in our
discussion, we highlight interesting differences in the patterns of findings for dyads
and individuals and speculate as to underlying mechanisms that could account for
these differences. '
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For purposes of examining the extent of the solution space that was considered
by students in each of the studies, we applied the method we had devised in our
earlier studies of trip planning: The problem was analyzed as a solution space
consisting of the major elements or goals that needed to be considered, their
interrelations, and decision or evaluation points (CTGV, 1993, 1994). (This analy-
sis is an adaptation of planning net analysis as described by VanLehn & Brown,
1980.) Based on the content of the think-aloud protocols and any written work,
students’ problem solving can be characterized in terms of the elements of the
solution space considered. In this context, this analysis was applied to students
participating in both experiments.

In addition, in Experiment 2, the interactions between the members of the dyads
supplied the information regarding components of the solution process. We also
looked at the process of solving. In so doing, we assumed three major processes:
establishing goals, reasoning that helps specify the steps needed to satisfy such
goals, and the application of appropriate mathematical skills. We refer to this
framework as the GRA model, and we characterize dyads’ solution processes in
terms of the goals stated, the reasoning as indexed by arguments used during the
solution process, and the application of appropriate mathematical computations.
We considered the contingency relations among goals, arguments, and computa-
tions—and how these related to elements of the problem space—to address ques-
tions of coherence and goal-directedness of the solution process. We were also
concerned with how the dyad interaction was reflected in the problem-solving
process. To examine this, we focused on the contribution of each member of a dyad,
as well as on the dyad interaction, to identify conditions that facilitate the solution
process. :

EXPERIMENT 1: COLLEGE AND HIGH-ACHIEVING
SIXTH-GRADE MATH STUDENTS’
BUSINESS PLAN SOLUTIONS

College and sixth-grade high-achieving math students were shown the Jasper

adventure, The Big Splash. They worked by themselves to solve the problem,
providing think-aloud protocols while they worked.

Method

Participants

Participants were 14 high-achieving sixth-grade students and 16 college under-
graduates. The sixth graders (M = 11 years, 9 months) were recruited from a local
public school. All had scored at or above the 80th percentile on the mathematics
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portion of the Tennessee Comprehensive Achievement Program (administered
approximately 6 months prior to the study), with 8 scoring at the 99th percentile.
The college undergraduates were volunteers from an introductory psychology
course at a southeastern university where the average Scholastic Assessment Test
score is above 1,050. They received their choice of course credit or monetary
remuneration for participating.

Materials

The Big Splash is an approximately 15-min video about a young teen named
Chris who wants to set up a dunking booth at his school fair. Figure 1 contains
a summary of the story. Briefly, Chris’s idea is to sell tickets for the opportunity
to dunk teachers in a pool of water. The money earned from the booth would help
purchase a video camera for the school’s TV studio. The principal of Chris’s
school, Ms. Stieger, offers to lend money to students who wish to have booths
at the fair. The maximum amount of each loan is $150, and to qualify, the
estimated income from the booth must be double the estimated expenses. To be
eligible for the loan, interested students must prepare a business plan detailing
their estimated income and expenses and their compliance with these rules (see
Frame 6 in Figure 1).

In the video, Chris gathers the information that he will use to develop his plan.
He conducts a survey of students at his school to determine if they would be
interested in buying a ticket to dunk a teacher and, if so, how much they would be
willing to pay. Chris also explores where to get the dunking machine and pool and
various options for filling and emptying the pool. Chris gathers information relevant
to several means of filling the pool, including using the school hose, having the fire
department deliver the water, and buying water from the pool store. Similarly, there
is information in the video relevant to several methods of emptying the pool (e.g.,
the pool store can remove it, the city’s public works truck can be used, or the water
can be siphoned or drained out).

The problem posed at the end of the video is to prepare the business plan that
Chris should present to Ms. Stieger. All information needed to solve the challenge
has been embedded in the story; however, as students watch the video for the first
time, they do not know what problem they will have to solve. Accordingly, it is
difficult for the student to determine what data are going to be relevant to the
challenge. Data are presented as a natural part of the story. For example, in The
Big Splash, Chris is shown taking a survey and summarizing the data. This
information is relevant to estimating revenue for the dunking booth, and after
students find out what the challenge is, they will need to realize the relevance of
these data and to use them appropriately (see the text accompanying Frames 8 and
9 in Figure 1).



The Big Splash Story Summary

Chris walks to the local fire station to do some research for a
report he is writing. As he walks toward the fire hall, he sees
a city truck cleaning the streets with water. The truck has the
following sign on it:

Department of Public Works
Capacity 3,000 gal

When Chris arrives at the fire hall, he meets Chief
Sullivan, the fire chief. Chief Sullivan shows Chris the
pumper truck, which can pump 1000 gallons a minute,
assuming they are hooked up to a hydrant. Chris asks if
they usually find a hydrant, and Chief Sullivan says that
usually they do, assuming they are in the city. Chief
Sullivan says that the pumper truck holds some water (the
sign says “capacity 700 gallons”), but it doesn’t hold
enough water to do much fire fighting. Chief, Sullivan then
shows Chris the 38-foot ladders. Chris asks how often the -
firefighters go out on fires. Chief Sullivan says that they
average 20 to 30 calls a week, although some of the calls
are false alarms.

Chris sees a “weird looking contraption” in the fire hall. Chief
Sullivan says that it is a dunking machine that they built. He
says that they sometimes sell 100 tickets per hour. They rent it
out for $25.00 per day, and the proceeds go to their
scholarship fund. Chris asks where they put the water. Chief
Sullivan says that they set it up in an above-ground
swimming pool. Chris then asks the chief to see the pole
which firefighters slide down when there is a fire.

FIGURE 1 (Continued)

442




Thursday afternoon, as Churis sits in school, he listens to
an announcement about the upcoming Fun Fair. The
principal, Ms. Stieger, announces that the fair will be
held a week from Friday from 10:00 A.M. to 3:00 P.M.
on the athletic field. She says that the proceeds will go
toward a new video camera for the student television
station. She also says that they hope to raise $800, and
they need at least one more good money-making
project for the fair. The school will lend someone up to
$150.00 to cover the initial costs of the project. Plans
need to be given to her by Wednesday.

As Chris listens to the announcement, he daydreams
about his teacher getting drenched as he is dunked by a
dunking machine. Two formulas, V=nr? x hand n~3.14,
are shown on the board behind the teacher.

Later that afternoon, Chris goes to Ms. Stieger to find
out what he needs to do to have a booth in the Fun Fair.
She tells him that he needs to write a business plan that
describes how much money he expects to take in, his
gross revenue, and how he arrived at that number.
Secondly, she needs an itemized account of all his
expenses. The expenses cannot exceed $150.00, the
maximum amount she can lend him. The plan needs to
include everything he will need so that she can see that
everything will be in the right place at the right time.
Her rule of thumb is that, if everything looks good and
the revenue is at least twice his expenses, the project is
viable and she can make him the loan.

Later, Chris meets Jasper at the Soda Shop to talk about
his plan. Jasper asks Chris how many students go to his
school. Chris has already researched this and found that
there are 380 students enrolled in the school and, on an
average day, twenty are absent. Jasper says it would be
nice to know how many students would buy tickets.
Chris estimates that more than half probably would.
Chris and Jasper decide a survey would be a good way
of getting a more accurate estimate.

FIGURE 1 (Continued)
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Chris hands out surveys to every sixth student in line going
into the school cafeteria during lunchtime on Friday. The
survey asks the following:

Sometimes at fairs, you'll see one of those dunking
machines. When you hit the target with a ball, a person
will fall in the water.

1. Would you like to “dunk” one of your teachers at the
All -School Fair?

Circle one
YES or NO

2. What's the most you would pay for one ticket (2
throws)?

Circle one
A.$ 50 C.$1.50
B.$1.00 D.$2.00

That afternoon, Chris meets with Jasper again at the Soda
Shop. They look at the results of Chris’ survey. Chris says
that 58 out of 60 students would like to dunk a teacher. He
shows Jasper the rest of the results:

$ .50 13 kids
$1.00 21 kids
$1.50 16 kids .
$2.00 8 kids

They begin to figure out how much money Chris would
make if he charged the different amounts for tickets
based on his survey results. Jasper says that all 58
students would pay at least $ .50 for a ticket. Chris
multiplied 58 times $ .50 and got $29.00. Next, Chris says
that all but 13 students would spend at least $1.00 for

a ticket. To determine how many students would pay
$1.00 for a ticket, Chris adds 21, 16, and 8 and gets an
answer of 45. Jasper has to leave, so Chris continues to
find what the best ticket price would be on his own.

On Saturday, Jasper and Chris meet Janet Foster, the
proprietor of Penguin Pools. She says that she usually
does not rent pools, but since Chris is doing this for a
school project, she might make an exception. Ms. Foster
shows them a pool that she thinks might be just what he
needs. It is 3 feet deep and 12 feet in diameter. It holds
about 2500 gallons of water. She will rent it to Chris for
$40 a day, in advance, and she will give him one-fourth off
for the second day if he needs it. Jasper asks if this price
includes delivery.

FIGURE 1 (Continued)
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Ms. Foster shows them a price sheet:

Set-up

Hours: 6 a.m. to 6 p.m. (Monday thru Friday) $7/hr
6 a.m. to 12 noon (Saturday) $10/hr

Water Delivery

$15/1oad (load = 1,500 gal) plus mileage
Mileage = $1.15/mi (one way; return trip free)

Water Pickup
(1,500 gal maximum) $10 flat fee

Ms. Foster says that Harold, her set up man, figures it takes
about two hours to set a pool up or take it down, and he
will start at 6 a.m., but he won’t work past 6 p.m. Chris asks
if two hours includes filling the pool. Ms. Foster says, “No,
it doesn’t. So be sure to allow yourself plenty of time up
front to fill the pool, especially if you are going to fill it
from a hose.” Ms. Foster points out that Chris could buy the
water from her. It costs $15 a load plus mileage; her truck
holds 1500 gallons. She says that it takes about 15 minutes
to pump water in or out of the pool. Ms. Foster says there
are 7.5 gallons in a cubic foot of water. Chris and Jasper
leave the pool store with 45,836.5 miles showing on the
odometer.

They arrive at the school (odometer reading: 45,845.4 mi) to
test how quickly water comes out of the water hose. It takes
them 20 minutes to get to the school from the pool store.
When they arrive at school, they walk past a fire hydrant to
get to the hose. It takes 30 seconds to fill a five gallon
bucket with water from the school’s water hose.

Sunday afternoon, Chris goes back to the fire hall to talk to
Chief Sullivan. Chief Sullivan says that Chris can use the
machine for a day, and they’ll bring it over Thursday
afternoon. Chris asks if they can begin filling it up at 8:30
Friday morning. Chief Sullivan agrees and says that they
can use the pumper truck to fill the pool, which will only
take a few minutes. Chris won’t have to pay anything for the
fill up because it’s a school project. He emphasizes that if the
firefighters are out on a call, they won’t be able to help until
they get back.

FIGURE 1 (Continued)
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Tuesday afternoon, Chris and Jasper meet at the Soda
Shop, Jasper is reading the newspaper. Chris sees an
article that says that the Public Works Department will
drain swimming pools free of charge. Concerned citizens
should call the Mayor’s Office between 8 a.m. and 5 p.m.
Chris says that he will be presenting his plan to Ms.
Stieger the next day.

Challenge

* Five teachers have told Chris that they are
willing to be dunked.

* Prepare a business plan for the dunking
machine project as if you were making the
presentation to Ms, Stieger.

FIGURE 1 Story board and summary for The Big Splash.

Procedure

Students first viewed The Big Splash. They were advised to pay close attention
to the story because they would be asked questions afterwards about the problem
posed therein. After viewing the video, students were interviewed individually in
a single, problem-solving session. The maximum session duration was 1.5 hr. They
were given the following instructions:

Chris’s challenge is to prepare a business plan to present to Ms. Steiger so
that she will lend him money to set up a dunking booth. I want you to imagine
that you are Chris and to prepare a business plan for Ms. Steiger, solving all
the problems that you need to decide on the best plan.

To ensure that students understood what a business plan entailed, the experi-
menter replayed the scene from the video in which the principal explained the
meaning of the terms income and expenses and detailed her criteria for making a
loan (see Frame 6 in Figure 1).

All problem-solving sessions were audiotaped. Students were asked to think
aloud as they solved the problem. Just before they began solving the business plan
challenge, the think-aloud procedure was explained through the use of a word
problem. Students solved the word problem, and the experimenter monitored and
prompted their verbalizations as they were solving the problem.
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Students were provided with paper and pencil for doing calculations, and the
interviewer volunteered to perform calculations on a calculator as requested by the
student. To eliminate memory demands during problem solving, students were
provided with a written summary of the story, as shown in Figure 1. The summary
contained all of the data (solution relevant and irrelevant) and the major story events
from the video. During problem solving, the interviewer used minimal probing
except to encourage thinking aloud and to elicit clarification on students’ state-
ments.

" Representation of the Solution Space

Think-aloud solution protocols were examined in relation to a solution space for
the problem. We captured the elements of the plan needed to solve The Big Splash
challenge by using a planning net representation, as shown in Figure 2. (Order of
execution is conveyed in the vertical arrangement of elements and not in the
horizontal arrangement.) The solution involves developing a business plan by
estimating revenue and expenses and then testing expenses against the two con-
straints set forth in the story: Expenses cannot exceed $150, and the revenue must
be twice the estimated expenses. Estimating revenue involves determining the ticket
price that will produce the greatest estimated income based on the sample and then
extrapolating to the population to estimate total income. With respect to expenses,
the best business plan involves constructing a pool plan that minimizes total costs.
Pool plan costs are a function of both fixed and variable expenses. For example,
the cost of the dunking machine is fixed. Different options for pool filling, however,
carry different costs. Also, these options fill the pool at different rates. For some
options, it takes so long that the pool must be rented for a second day, and additional
rental costs are incurred. As a result, total expenses for the pool are determined by
several interrelated factors. .

An important aspect of the solution space is that there are multiple plans for
filling the pool and for emptying the pool. Each plan needs to be tested against time,
risk, and conservation constraints. If a particular plan meets these constraints, costs
for the filling or emptying plan need to be determined. Optimizing the solution
implies looking for as many filling or emptying plans as meet the constraints so
that the overall expenses for the pool can be found. Minimizing only the filling or
emptying expenses may not produce the lowest expenses for the overall pool plan
because of the interdependencies among solution-space elements.

An interesting aspect of The Big Splash solution space is that some of the filling
options have no costs but either take a long time (using the school hose) or are risky
(having the fire department bring the water). There are also trade-offs for the
emptying options (e.g., if the water is drained or siphoned out, it will take time and
be environmentally irresponsible).
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‘Results and Discussion

College students’ and children’s think-aloud protocols were analyzed from three
perspectives on problem solving: statement types, error types, and the business plan
elements reflected in Figure 2. Two coders independently scored 25% of the
protocols. Coder agreement exceeded 90%. Disagreements were resolved through
discussion. Scoring and results for each perspective are described separately.

Statement Types

To describe the nature of students’ solution-relevant discourse during problem
solving, unique protocol statements were categorized by type. (Statement repeti-
- tions were not scored.) The statement categories and their definitions were as
follows:

* Goal: A goal describes what the student plans to do. These are often used
to justify a calculation that a student is performing or deems useful to
perform. It does not include plans to find solution-relevant data or givens.

* Isolated fact: An isolated fact is a statement about data that is not part of a
calculation a student is performing or performs next.

* Attempt: An attempt is a procedure, for example, any arithmetic operation.

* Solution: A solution is the outcome of an arithmetic operation. It includes
beliefs or guesses about the outcome of an operation.

The following protocol segment from one student illustrates how these criteria were
applied:

It takes 20 minutes to drive from the pool store to the school [isolated fact].
How many loads of water will he need to buy? [goal]. It holds 2,500 gallons,
so that’s 2 loads [attempt and solution for preceding goal].

Categorizing the protocol statements took into account the context in which the
statement occurred. That is, to be credited as an attempt, the procedure or arithmetic
operation had to occur in the context of a relevant goal or plan; likewise, the same
had to occur for coding solution statements. Guesses or beliefs were also coded as
solutions when they occurred in the context of an appropriate attempt or goal. The
difference between attempt and isolated fact was the context. For example, in the
preceding protocol segment, the time to drive from the pool store to the school was
not part of the goal plan for determining the number of loads of water needed, and
there was no preceding goal with which the statement was relevant. Hence, it was
coded as an isolated fact. In contrast, if a student mentioned the time to drive from
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the pool store to the school in the presence of a relevant goal (e.g., the goal of
figuring out how long it would take to get water from the pool store to the school),
it was credited as an attempt. In other words, isolated facts were coded if the stated
information was not related to the goal or plan under consideration.

Statement Type Results

The mean number of statements in each category for college and sixth-grade
students is shown in Figure 3. College students provided significantly more
statements than sixth graders, F(1, 28) = 12.58, MSE = 26.57, p < .001. There was
a significant effect of statement type, F(3, 84) = 94.12, MSE = 7.33, p < .001.
Attempt and solution statements were more frequent than were goal statements and
isolated facts (Scheffé critical difference = 2.46, p < .01). The Statement Type x
Group interaction, however, was also significant, F(3, 84) = 11.97, MSE=7.33,p
<.001. A Scheffé test indicated that the significant difference between groups was
restricted to attempt and solution statements (critical difference = 4.40, p < .01).

Mean Number of Statements of Each Type

20
B College (n=16)
151 B sixth (n=14)
10
5 -
Isolated Facts. Goals Attempts . Solutions

Statement Type

FIGURE 3 Mean number of statements per category provided in the think-aloud protocols of
participants in Experiment 1.
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College students’ protocols contained significantly more attempt and solution
statements than the sixth graders’ did.

An additional analysis was conducted on just the solution statements to deter-
mine if there were between-groups differences in the number that were correct and
incorrect. Correct statements were of numerical values mathematically derived
from information in the video that were appropriate in the context of the problem
solving. College students (M = 10.18) made more correct solution statements than
did sixth graders (M = 3.93), but there were no differences in the number of incorrect
solutions (Ms = 3.75 and 4.14, for college students and sixth graders, respectively);
for the Group x Correctness of Solution interaction, F(1, 28) = 13.28, p < .001.
Within groups, the interaction indicates that college students were three times as
likely to produce cotrect solutions as they were to produce incorrect ones. For sixth
graders, however, correct and incorrect solutions were equally likely. Finally,
mathematical derivations of solutions could involve multiple steps. When we
examined the number of errors per incorrect solution, we found that sixth graders
produced twice as many as the college students did, F(1, 25)=7.21, p <.05. Thus,
the college students had a much higher ratio of correct to incorrect solution
statements than the sixth graders did.

These data indicate that most of the information in the protocols dealt with
attempts and solutions to those attempts, with relatively little discourse on what
goals needed to be met. This finding may reflect the relatively high degree of
redundancy that exists between attempts and goals. That is, if a problem solver is
working on ticket price, it may be redundant to report “He needs to think about
ticket price.” It is noteworthy that the number of isolated facts was relatively low
because, on occasion, we observed students who, not knowing quite where to start,
begin going through all the “facts” they can think of (e.g., CTGV, 1994). In this
context, such fact-listing behavior was not very common.

Types of Errors

The differences between groups in the rate of correct solutions were quite
large. To determine if there were also differences in the types of errors made, we
classified the errors that occurred in the solutions according to the following
categories:

1. Math formulation: Errors that resulted from an incorrect mathematical for-
mulation of the problem. Examples include (a) adding rather than subtracting
odometer readings to determine distance and (b) adding the estimated income from
each ticket price to determine the income from the population rather than doing the
appropriate extrapolation procedure.
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2. Calculation: Errors that resulted from a mistake in a computational proce-
dure. Otherwise, the problem was correctly formulated and contained the correct
data or givens.

3. Plan element omission: Errors that resulted from the omission of a part of
the plan. Examples include failing to include (a) the cost of the dunking machine
when determining total expenses or (b) the mileage charge for a second load of
water from the pool store,

4. Plan element misconception: Errors that resulted from faulty assumptions.
Otherwise, the problem was correctly formulated and contained the correct data.
Examples include (a) computing an overestimate of labor charges based on the
incorrect assumption that there are labor costs for filling the pool with water and
(b) computing an underestimate of the cost of water from the pool store based on
the incorrect assumption that partial loads of water could be purchased. These
misconceptions reflect inaccurate understanding of the constraints operative in the
problem space.

5. Wrong given: Errors that resulted from using incorrect data. Otherwise, the
problem was correctly formulated. Examples include (a) using $8 instead of $7 as
the hourly charge for setting up the pool or (b) using $20 instead of $25 as the cost
for renting the dunk tank from the fire department.

6. Unsubstantiated outcome: Errors that resulted when students apparently
solved a problem by guessing—that is, when there was no overt evidence that the
stated information was the result of a mathematical operation. We note that it is
possible the student may have performed a mental operation; hence, we call these
unsubstantiated outcomes rather than guessing.

The number of errors of each type made by each subject were analyzed in a
two-factor multivariate analysis of variance in which grade level (college, sixth)
was the between-subjects factor and type of error was the within-subject factor (six
types of errors). The main effects were significant for grade, F(1, 28) = 12.04, MSE
=1.05, p < .01; type of error, F(5, 140) = 25.98, MSE =0.72, p <.01; and the Grade
x Type interaction, F(5, 140) = 8.26, MSE = 0.72, p < .01. The data are provided
in Figure 4. Comparisons of the means indicated that college students made fewer
errors than sixth graders in two of the six error categories: plan element omission,
#(28) = 4.07, p < .01, and use of wrong given information, #(28) = 2.30, p < .05.
Grade differences in the other categories were not significant. The mean error rates
were 2.80 and 6.07, for college students and sixth graders, respectively.

The most frequent source of errors was plan element omission among both the
college (40% of the errors) and sixth-grade (55% of the errors) students. Plan
element omission errors were most often associated with expenses—for example,
when students forgot to include the cost of a second load of water for the pool, or
the cost of disassembling the pool, or the mileage charge associated with transport-
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Distribution of Error Types

Unsubstantiated Outcome |

Sixth (n=14)
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FIGURE 4 Distributions of error types in Experiment 1.

ing water for the pool. There was no single plan element that was omitted by more
of the sixth graders than college students.

The second most frequent source of errors was math formulation, accounting
for 22% of the college students’ errors and 20% of the sixth graders’ errors.
Many of the formulation errors were associated with students’ attempts to
estimate revenue. This was the case for both college and sixth graders; however,
more sixth graders made errors of this type when determining revenue. Many
sixth-grade students did not seem to understand that sample data could be used
to estimate population parameters. A number of students did not use the
information about the proportion of people in the sample who would buy a ticket
at a given price to determine the proportion of the population who would buy
a ticket at this price. For example, the following is an excerpt from a sixth-grade
student’s protocol.

OK. First he’s got the dunking booth and then ... he has the ticket cost. So,
umm ... 13 of the students say 50 cents, 21 say $1, 16 say $1.50, and 8 say
$2. More people said $1 than anything else. $1 has 58 students—no, $1 times
60 students equals ... $60. And umm, $60. ... Well, Chris said that they were
380 students at his school but 20 were usually absent. That that leaves ... 380
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minus 20. That leaves 360 students that are possible that could be there. And
if you multiply 360 times 1, that would be $360 that the school could make.

This student’s analysis ignores the data indicating that only 45 of the 60 students
polled would pay $1. Instead the student takes the highest raw frequency response
and applies it directly to the school population. (Application of the correct sample
proportion to the population yields an income estimate of $270.) In contrast to the
sixth-grade students, all of the college students seemed to understand that they could
use sample information to-extrapolate to the population; their formulation errors
reflected confusions regarding the appropriate ratio for representing the part-whole
relation of the sample to the population.

It is interesting to note those aspects of problem solving that did not seem to be
major sources of difficulty for participants in this study. Calculation errors ac-
counted for only a small percentage of the errors made by either sixth-grade students
(2%) or college students (7%). Likewise, use of inappropriate data (13% for
sixth-grade and 9% for college students) and violations of the problem space
constraints (8% for sixth-grade and 13% for college students) constituted relatively
small percentages of the errors. The latter contrast with sources of difficulty
experienced by individual solvers of the trip-planning problems (CTGV, 1994).

To summarize, problem solving tended to be incomplete rather than inaccurate.
That is, mathematical procedures were generally executed accurately on the appro-
priate given information. The two major sources of difficulty were failures (a) to
consider necessary elements of the solution space and (b) to select the appropriate
mathematical procedures.

Plan Elements in the Solution Space

The final analysis examines both the plan elements comprising students’ prob-
lem solving and the degree to which students optimized their plans and tested them
against the constraints on expenses that had been set forth by Ms. Stieger. Twelve
plan elements that reflect the major subgoals in the solution space were the focus
of the analyses (see the elements preceded by an asterisk in Figure 2). For purposes
of these analyses, we examined the business plan that participants said was their
best. This was either their only plan or the one they said was their best when asked
this question by the researchers.

Plan elements were scored with respect to three levels of inclusion:

1. Mention: Credit was given when the student stated or implied the need to
address a specific element or when the student attempted to solve an element,
even if the element had not been explicitly stated. This measure indexes
awareness of the element. In previous research, we have found differences in
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awareness of the importance of certain plan elements (CTGV, 1994; Goldman &
CTGV, 1991).

2. Attempt: Credit was given when the student attempted a mathematical
solution to a specific goal or subgoal. The attempt had to involve the use of
mathematical operators and specific numerical values for credit to be given. No
credit for an attempt was given if the student merely stated isolated facts without
trying to use them in a calculation or in some other purposeful manner.

3. Solve: Credit was given when the student produced a correct mathematical
solution. Estimated answers were coded as correct if the numerical bases for them
were clear.

In reporting the results of these analyses, we have grouped the plan elements into
four clusters: revenue, expenses, feasibility, and optimization.

Revenue

Estimating revenue involved estimating the amount of money that would be
generated by ticket sales on the day of the fair. There were two plan elements
associated with making this estimate. The first involved using the information
obtained from the sample to determine a ticket price at which income would be
maximized. The relevant data had been presented in the story (see Frame 9 and
accompanying text in Figure 1). Because of the way the survey question was asked
(“What’s the most you would pay for one ticket [2 throws]?”), student solvers had
to construct a cumulative frequency distribution rather than deal with only the raw
frequency for each specific price. The estimated income based on the results of the
sample then had to be extrapolated to the school population.

Best ticket price.  Figure 5 shows the percentages of college and sixth-grade
students who mentioned, attempted, and accurately estimated the best ticket price.
All of the college students and all but one sixth grader mentioned ticket price, but
only three (21.4%) of the sixth graders and eight (50%) of the college students
attempted any calculations to determine the best ticket price. The others appeared
to choose $1 as the best ticket price on the basis of the highest raw frequency (21
people, as shown in the survey chart). These individuals gave no indication that
they considered the cumulative distribution or that they determined the sample
revenue for any of the other ticket prices. Of those who did try to calculate the best
ticket price, college students were largely successsful in that seven of eight arrived
at the correct answer. Among sixth graders, only one student correctly solved this
part of the problem.
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FIGURE 5 Percentages of participants including revenue components in Experiment 1.

Extrapolation to the population. The data in Figure 5 for extrapolation
show that only half of the college students and only one of the sixth graders correctly
solved this part of the problem. The low solution rate contrasts with the high rates
of mentioning and attempting to determine income for the school population. All
college students and 86% of the sixth graders mentioned and tried to figure out how
much the whole school would pay. A frequent error for all students was to use the
wrong number for the school population (i.e., 380, the total number of students
enrolled in the school, instead of 360, the average number of students who were
present on a given day). Also, as we noted earlier in our discussion of the error type
data, formulation errors were common for sixth graders and college students when
they were attempting to determine revenue to be raised from ticket sales. The nature
of these errors, however, was different for the two groups. College students’ errors
were related to confusions regarding the appropriate ratio in going from the sample
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to the population, a problem indicative of inadequate understanding of the
part—whole relation between the sample and the population. In contrast, the formu-
lation errors made by the sixth graders suggest that many did not understand that a
sample could be used to estimate population parameters. These students did not use
the part-whole relation of the sample to the population. Instead, they indicated that
everyone in the school would come, said that half the school would come (an
estimate that was mentioned in the video by Chris before he did his survey), or
added the frequency data from the sample and used that total as the estimated
revenue from ticket sales.

Expenses

The plan elements for expenses reflect fixed and variable costs. Fixed costs
included the cost of renting the dunking machine and the pool and the costs for
setting up the pool. Variations in costs emerge because these depend on the selected
method of pool filling and emptying. The method of filling also had implications
for the number of days the pool had to be rented.

Fixed costs. Eighty-six percent of the college students and 65% of the sixth
graders mentioned the cost for the dunking machine. In addition, all students
mentioned and attempted to determine what the fixed costs for the pool would be
(i.e., setup charges). Less than half the sixth graders, however, and 69% of the
college students accurately determined the fixed costs for the pool. Errors were due
to omission of one or more of the relevant costs and to incorrect determination of -
the hourly charges for setting up the pool.

Variable costs. There was variation in the pool-filling and pool-emptying
plans that individuals chose and in the costs associated with them. For example,
pool-filling and pool-emptying plans that involve using the pool store have costs
associated with them, whereas using the school hose or the fire department to fill
the pool results in no costs. The school hose takes longer than the other methods,
however, and the fire department method is risky because they might be unavailable
due to a fire alarm.

" First, we report the results for the pool-filling plans and then for the pool-emp-

tying plans. Among the college students, 50% chose to use the fire department to
fill the pool; 31% chose the pool store plan (an expensive plan that has no risk);
13% chose a combination plan, that is, buy one load of water from the pool store
and fill the rest of the pool with the school hose; and 6% chose some other type of
plan. Among sixth graders, 29% selected the fire department plan, 50% chose the
pool store plan, 7% chose the pool store and school hose combination plan, and
14% chose some other plan.
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In pool-filling plans for which there were associated expenses, students were
very likely to mention and attempt to determine the costs. All of the nine college
students proposing plans that had expenses associated with them mentioned and
attempted to determine these costs. Only 33%, however, accurately solved the
expenses for their pool-filling plan. Similarly, for the sixth graders—nine of whom
selected pool-filling plans that had expenses—eight mentioned and attempted to
solve for these expenses. Only one sixth grader, however, accurately solved the
expenses. Errors in solving for costs were most frequently associated with plan
element omissions.

Pool-emptying plans were specified by fewer students than were pool-filling
plans. Among college students, 11 of the 16 decided to use the public works truck
to pick up the water, incurring no expenses; the other 5 students did not indicate
how they would empty the pool. Among the sixth graders, only 3 students decided
to use the public works truck, 7 mentioned that they needed to think about how to
empty the pool and what it would cost but did not go any further with it, and the
remaining 5 students did not mention how they would empty the pool at all.

Feasibility: Time and Risk Factors

In The Big Splash, time is one aspect of feasibility with which students have to
deal, regardless of the specific plan. Risk is a second aspect of feasibility, but it is
relevant only if certain plans are selected. ’

With respect to time, one needs to know if there is enough time to implement a
particular plan successfully. Fewer than half of the college or sixth-grade students
mentioned or attempted to determine if they had enough time to execute their
pool-filling plan. For the pool-emptying plan, virtually no one considered time,
possibly because those who considered a pool-emptying plan selected the public
works truck. The video did not include information about how long it would take
to empty the pool using this method.

The time aspect of plan feasibility may have been overlooked by a substantial
number of individuals because the challenge did not explicitly mention it. In the
video, however, time was mentioned in connection with several plan components
for setting up the dunk tank and should have been considered in calculating a
number of the expenses. Time may function as an embedded subgoal, and the low
incidence of considering it may be comparable to previous results in which we have
found that embedded goals—especially those arising in response to an obsta-
cle—are not dealt with frequently (CTGV, 1994; Goldman & CTGV, 1991).

Another aspect of feasibility is risk: Is the plan too risky to count on? Information
in the video indicated that the fire department could not fill the pool if they were
called out on an alarm. Of the seven college students and four sixth graders who
chose the fire department to fill the pool, only three of the college students and three
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FIGURE 6 Percentage of participants including optimization and constraint testing ele-
ments in Experiment I.

of the sixth graders explicitly considered the likelihood that the fire department
would be unavailable on the day of the fair due to a fire alarm.

Optimization and Constraint Testing

The data reported thus far on plan elements have been for the plan that the
students selected as the best business plan, if they gave more than one. In previous
work, Goldman and CTGV (1991; see also CTGV, 1994) reported the tendency for
students not to consider more than one plan even though the one they had selected
might not have been optimal. In fact, in solving a trip-planning adventure, the
percentages of problem solvers who continued problem solving in an attempt to
optimize the plan were relatively rare. Figure 6 suggests a similar trend in the
business plan case but only for the younger students: 81.3% of the college students
did consider multiple plans but only about 43% of the sixth graders did.

The data in Figure 6 also indicate that a large number of students might not have
been able to convince Ms. Stieger, Chris’s school principal, that their business plans
met the constraints she had set forth (expenses under $150 and revenue twice as
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much as expenses). Only 56% of the college students and 36% of the sixth graders
tested their plans against one or both constraints.

Summary of Expetiment 1

Finding a solution to The Big Splash requires the use of statistical inference;
students were not very good at this, even those who were enrolled in college. When
they were inaccurate, they were misled by high raw frequencies, they failed to
construct the cumuiative distribution called for by the problem, and they had
difficulty formulating the appropriate ratio needed for extrapolation. In addition,
some sixth graders lacked the fundamental notion that sample data could be used
to estimate population parameters.

Plan feasibility was not carefully tested with respect to time constraints; students
focused on expenses. The need to consider time is actually embedded in costs for
the pool. The low frequency of attending to this subgoal may be due to its embedded
status, consistent with our previous findings on embedded goals (CTGV, 1994;
Goldman & CTGV, 1991).

Although the business plan domain provides explicit constraints against which
to test solutions, the majority of students failed to-do so. Despite the focus on costs
at the pool plan level, most students did not test whether their business plans, in
fact, met Ms. Stieger’s overall constraints.

In the business plan domain, in comparison with trip planning, students were
somewhat better able to coordinate different pieces of information with the appro-
priate plan element—perhaps because of the salient differences among the plan
options.

Major sources of differences between college students and sixth graders were
in the number of attempts and correct solutions, in the tendency to consider multiple
plans, and in the breadth of exploration of the solution space. There were not any
particular differences in their skill at generating the subproblems that needed to be
solved.

EXPERIMENT 2: FIFTH-GRADE DYADS’ BUSINESS
PLAN SOLUTIONS

Experiment 1 indicated that complex problem solving in the business-planning
domain is as difficult for students as complex trip planning. The plan element
analysis indicated that there were major gaps in understanding the statistical
concepts associated with revenue. In contrast, the sixth graders seemed to under-
stand the concept of expenses, but the errors indicated the need for additional
monitoring of the solution process. Particularly interesting was the failure to
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consider alternative business plans. This replicates the finding from trip planning
that students tended to stop short of comparing alternative plans, even when they
had not chosen the fastest plan as their own solution (CTGV, 1994; Goldman &
CTGV, 1991).

Individual problem solvers in Experiment 1 tended not to articulate their justifi-
cations for particular actions or their interpretations of solution outcomes. Our goal
in Experiment 2, therefore, was to understand more fully the nature of the reasoning
processes associated with different solution outcomes. Consequently, we had dyads
solve The Big Splash cooperatively. We anticipated that the problem-solving proto-
cols produced by dyads would contain greater information about reasoning and
decision-making processes than was available in protocols produced by individuals.
We also examined the contributions made by each member of the pair to identify the
patterns of interactions associated with more successful problem solving.

. Method
Materials

The materials for Experiment 2 were the same Jasper adventure (The Big Splash)
and accompanying materials as were used in Experiment 1.

Participants

Participants were 34 fifth graders (15 boys and 19 girls) drawn from a public
school system in a suburban township located in the Southeast. Percentile scores
on the math component of the Tennessee Comprehensive Achievement Program
ranged from the 74th to the 99th percentile (M = 88). Eleven of the students scored
at the 90th percentile or better. Dyads were formed to match percentile scores and
gender, but one dyad was mixed gender.

Design and Procedure

Each dyad participated in two 45-min sessions in aroom outside their classroom.
Participants were asked to respond orally, and all responses were videotaped. In
the first session, dyads were initially presented with The Big Splash. During the
video presentation, participants were given paper and pencils in the event that they
wanted to take notes, although they were not instructed to do so. After watching
the video, each dyad received the following general instructions:
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For the rest of the period, we will be focusing on the challenge. In a few
moments, I will be giving you an information sheet with all the important
information from the video. First, though, I want to talk to you about working
together. I want you to concentrate on working as a team. Think out loud as
much as possible so we can tell what you’re thinking and so your partner
understands what you are doing. To be a good team, people need to talk to
each other. So, listen closely to your partner and what he or she says. If your
partner says something you don’t understand, ask him or her to explain, or if
your partner says something that you don’t agree with, tell your partner and
explain why you do not agree.

Following these general instructions, each dyad was presented with two tasks.
The first was a 10-min brainstorming task in which students were asked to think
about and construct a list of the important things one needed to do in order to solve
the challenge. Instructions for this task were as follows:

The first task I want you to do is think about the challenge without making
any calculations. Specifically, I want you both to spend a few minutes
thinking about and writing a list of the most important things Chris had to
‘think about in preparing his business plan.

After the brainstorming session, the experimenter indicated that two important
factors that Chris had to consider in developing his business plan were his estimated
expenses and his estimated income. The experimenter then proceeded to solve the
income side of the problem, prefacing this action with the following: “What I"d
like to do now is show you how Chris figured out what his income would be, and
then later, your task will be to figure out what his expenses and profit would be.”
After the experimenter explained the income portion of the problem, participants
received the aforementioned fact sheet and were instructed to begin the next phase
of the study—the problem-solving task. In this task, the dyad spent the remaining
part of the session, or about 15 min, solving the Jasper challenge. In the second
and final 45-min session, participants were instructed to continue to work on the
Jasper challenge.

Results and Discussion

The dyads’ problem solving was first analyzed using two of the same apalyses—the
error and solution-space analyses—that were conducted on the think-aloud proto-
cols generated by the individuals in Experiment 1. Two coders independently
scored 25% of the protocols. Coder agreement exceeded 90%. Disagreements were
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FIGURE 7 Distribution of error types in Experiment 2.

resolved through discussion. A third set of analyses examined the reasoning that
occurred in the dyads with respect to goals, arguments, their interrelations, and their
relations to calculations and solution-space coverage.

Types of Errors

The mean number of errors made by dyads was 3.94. The distribution over the
types of errors is shown in Figure 7. There were significant differences among the
types, F(6, 16) = 8.31, MSE = 0.92, p < .01. The Newman-Kuels procedure
indicated that all pairwise comparisons were significant. As in Experiment 1, the
most frequent type of error was plan element omission, accounting for 39% of the
errors. The next most frequent types of errors were plan element misconceptions
(22%) and math formulation errors (18%). Also consistent with Experiment 1,
relatively few dyads produced incorrect solutions as a consequence of making
computational errors (7% of the errors).
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Although there were procedural differences between Experiment 1 and 2, it is
still interesting to compare these results to those obtained from the older participants
in Experiment 1. Dyads made fewer errors than sixth graders working alone but
more than college students. Plan element omissions were lower for the dyads than
for the sixth graders but about the same as the percentage for the college students.
Finally, dyads produced a higher percentage of errors due to misconceptions but
about the same percentage of formulation errors. We speculate that dyads may have
been less likely than individual children to omit plan elements because dyad
members monitor their partners’ plans and, when they can, contribute information
about missing plan elements.

‘Plan Elements in the Solution Space

To describe both the extent to which dyads explored the solution space and their
success in doing so, we examined the plan elements related to expenses that they
included in their solutions. As in Experiment 1, plan elements were scored with
respect to three levels of inclusion. That is, we determined if a plan element had
been mentioned, if an attempt had been made to solve the element, and if the element
had been successfully solved. For purposes of these analyses, we examined the plan
for estimating expenses that dyads indicated was their best.

Expenses

Fixed costs.  Asdiscussed earlier, the fixed costs associated with the problem
are the cost of the dunking machine (a flat fee that is given in the problem) and the
costs associated with procuring the pool (i.e., the daily rental charge for the pool
and the labor costs for assembling and disassembling it).

The fixed cost for the dunking machine was mentioned by all but one pair of
students. In addition, all pairs mentioned and attempted to compute the fixed costs
for the pool, and the majority of these students were successful. Relative to the data
from Experiment 1, a greater number of fifth-grade dyads than individuals (i.e.,
sixth graders) mentioned the cost of the dunking machine (94% and 65%, respec-
tively) and successfully solved the fixed costs for the pool (59% and 43%,
respectively).

Variable costs. Recall that a major aspect of the problem space involves
generating and evaluating plans for filling and emptying the pool. The available
options differ in terms of cost and feasibility with respect to time and risk.
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All dyads mentioned that they had to consider expenses for filling the pool.
Fifty-nine percent of the pairs, however, selected a pool-filling plan that was free
(i.e., water from the fire department or water from the school hose) and conse-
quently did not have to compute any costs for the water. The remaining 41% of the
dyads chose to buy some amount of water from the pool store and attempted to
compute how much that would cost. Only one pair, however, produced a correct
answer. The most common errors were plan element omissions, for example,
omitting the cost of a second load of water or the charge for mileage. Formulation
errors were also common. In particular, dyads had difficulty determining how to
use odometer readings to calculate mileage.

In terms of emptying the pool, only one option (pool store truck) involves any
expense: Seventy-six percent of the dyads mentioned a plan for water disposal, but
none of these students selected the pool store truck as their means for removing the
water. Hence, there was no need to consider cost.

With respect to pool-filling expenses, the results for the dyads and individuals
in Experiment 1 were very similar. Virtually all students mentioned the water-filling
costs and, when appropriate, attempted to determine total costs. With rare excep-
tion, however, the total costs were incorrect, in large part-because students failed
to include all relevant expenses. In contrast, the dyad and individual data for
pool-emptying expenses are quite different. Dyads selected methods that were free;
the majority of individuals selected a method with associated costs but did not
consider what those costs would be. '

. Feasibility: Time and Risk Factors

As noted in Experiment 1, plan feasibility with respect to time constraints was
not really considered by individuals working alone. We speculated that the low
frequency of attending to time may have been due to its embedded status in the
planning net; time is not explicitly mentioned in the challenge and only emerges as
a subgoal in calculating expenses.

The majority of dyads mentioned and attempted to solve the time subproblem.
About twice as many dyads as individuals working alone mentioned filling time
(88% vs. 43%, respectively) and attempted time calculations (59% vs. 29%,
respectively). The success rate of these attempts to solve time, however, was low
for dyads, as it had been for individuals in Experiment 1. Dyads who attempted to
determine how long it would take to fill the pool if they hired the pool store were
most often unsuccessful because they omitted the time associated with filling and
transporting the second load of water. Dyads who attempted to determine how long
it would take to fill the pool with the school hose were most often unsuccessful
because they did not correctly formulate the problem, which involves using rate
information and proportional reasoning.
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Optimizing and Constraint Testing: Dyad Performance
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FIGURE 8 Percentage of participants including optimization and constraint testing elements
in Experiment 2.

The data on pool-emptying time indicated that only two dyads attempted to find
out how long it would take to empty water from the pool. The low salience of this
element for the dyads replicates the finding for individuals.

Optimization and Constraint Testing

Figure 8 shows that the overwhelming majority of dyads (15, or 88%) attempted
to optimize their plans by considering more than one way to fill the pool. With
respect to the performance of individuals, these dyads performed at the level of the
college students and considered multiple ways to fill the pool about twice as often
as the high-achieving sixth graders. Because of several procedural changes between
the two experiments, we cannot attribute this difference solely to working in dyads.
One advantage of dyads over individuals, however, may be that dyads are better
able to monitor each other’s problem solving and can remind one another of
important problem constraints.
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Figure 8 also shows the percentage of dyads who considered the financial
constraints. The overwhelming majority of the dyads (88%) considered one or both
financial constraints. As with the time constraints, this level of performance
compares very favorably with the performance of college students in Experiment
1 (Figure 6).

The results of the plan element analyses suggest that dyads are very likely to
consider multiple-solution plans and to test the feasibility of their chosen plans,
both with respect to the time needed to execute these plans and with respect to the
constraints on expenses and profit. In addition, the analyses suggest that, relative
to the performance of sixth graders in Experiment 1, dyads mentioned and at-
tempted to solve more of the expense elements of the solution space. Again, these
outcomes are consistent with the idea that important functions for the second
member of the dyad are to monitor the problem solving and to share knowledge
that advances exploration of particular solution plans—as well as knowledge of
alternate plans and problem constraints. This is not to say that individuals cannot
attend to their own problem solving in this way, but it may be that, in problem-solv-
ing situations as complex as The Big Splash, they do not do so as frequently or as
effectively. It is certainly possible that alterations to the task context that reduce the
complexity of the situation might lead to more individuals monitoring their problem
solving; this would be an interesting experiment to conduct.

The enhanced performance of dyads relative to individuals was anything but a
foregone conclusion. The interaction among the members of the dyads might well
have impeded problem solving (cf. Goldman et al., 1992; Salomon & Globerson,
1989). The key issue concerns how the dyads interact in the problem-solving
process (e.g., Webb & Palincsar, 1996; D. Wood, Wood, Ainsworth, & O’Malley,
1995). In the next section, we examine the problem-solving process more closely.
We first consider the relations among three major processes involved in complex
problem solving: goal generation, reasoning about those goals, and the application
of mathematical calculations to meet those goals. We then examine patterns of
interactions associated with effective problem solving.

The Goals, Reasoning, and Application Framework

We expanded each element of the planning net representation by “unpacking” it
“into the more detailed series of goals and subgoals constituting each element of the
solution space depicted in Figure 2. In so doing, we generated 125 goals and subgoals,
hereafter referred to as goals. A portion of the expanded planning net structure is
presented in the Appendix. This expansion allowed us to capture problem-solving
processes at the level of detail reflected in the dyads’ conversations. We first report
some basic descriptive information about goals, arguments, and mathematical
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calculations present in the dyadic protocols of the problem-solving portion of the
experiment. We then report on the contingency relations among them.

Goals

Examination of the data revealed that dyads generated 237 goals, 168 of which
were associated with the goal structure—140 correct and 28 incorrect. (Incorrect
goals were within the goal structure but not stated accurately.) In addition, 69 goals
were stated that were outside the goal structure, such as “to know what teachers
needed to be dunked.” The data thus indicate that 71% of the goals generated by
the dyads were associated with the goal structure of the solution space proper-—83%
of which were correct. There was considerable variation across dyads with respect
to the total number and proportion of goals generated per dyad. The number of
goals stated by a dyad ranged from 4 to 29, with the proportion of correct goals
ranging from .29 to .89.

The goals in the goal hierarchy were categorized as high, medium, and low.
High-level goals such as “estimate profit” and “select pool plan” were global in
nature and referred to the three highest levels of the hierarchy. Medium-level goals
such as “determine cost for filling the pool using the store option” were drawn
from the middle three levels of the hierarchy. Finally, goals of the lowest three
levels, such as “determine cost of filling pool” and “determine mileage from pool
store,” represented the most specific goals. In general, the lower levels of the
hierarchy reflected greater specificity. The data indicated that students mentioned
approximately the same percentage of high and medium goals (46% and 44%,
respectively), but rarely generated low-level goals (10% of total goals). Further-
more, this pattern of results obtained from the problem-solving sessions was
consistent with similar (but not reported) analyses of goals mentioned during the
brainstorming session.

Arguments

An argument was defined as a conclusion supported by one or more reasons.
Argument soundness was evaluated on the basis of two criteria: the relevance of
the reason to the conclusion and reason acceptability (i.e., whether the reason
supported the conclusion; Angell, 1964). A total of 439 arguments were generated,
with 339 (or 77%) being judged as sound. As with goal statements, the data
indicate considerable variation in performance across dyads with respect to the
number (M = 20.0, range = 1-46) and proportion of sound arguments generated per
dyad (M = .76, range = .48-1.00). -
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The content of the dyads’ reasoning was classified into one of five types of
arguments:

1. Goal-related arguments involved reasoning about goals, for example, “He
needed an alternate plan in case they were on a fire so they maybe have to get the
water from ... the pool people.”

2. Infact-related arguments, dyads reasoned about facts or inferences pertaining
to the facts of the story, for example, “the dunking machine is $25 a day. ... No,
they said they would give it to him for free.”

3. Calculation-related arguments were those in which calculations were stated
in the form of an argument, for example, “It’s $7 an hour and 2 hours to set up, so
that’s $14.”

4. Examples of metacognitive-based arguments were “It doesn’t say. Yes [it
does]. We’ve got that already.” Students also reflected about the problem or their
progress through the problem.

5. The remaining category was irrelevant arguments. These were comprised of
opinions or statements beyond the scope of the solution space, for example, “So

that’s a lot of money,” which was said in the context of the estimated revenue of
$270.

Analysis revealed that the distribution of sound arguments across type was as
follows: (a) goal related—38 (11%); (b) fact related—116 (34%); (c) calculation
related—117 (35%); (d) metacognitive—34 (10%); and (e) irrelevant—34 (10%).
The data thus indicate that 69% of the arguments involved supporting or disputing
facts and calculations. Arguments were also examined with respect to whether they
supported a given claim or whether they opposed a given claim (i.e., were counter-
arguments). Of the 339 arguments generated, 230 (68%) were supportive, whereas
109 (32%) were counterarguments.

Mathematical Calculations

As indicated in the error analyses, calculations were not often sources of solution
errors. The mean proportion of calculations producing correct solutions was .66,
but the range was large—.33 to 1.00. Likewise, there was substantial variability in
the number.of computations attempted: The range was 6 to 17, with a mean of 9.29.

Interrelations Among Goals, Arguments, and
Calculations

In this section, we consider data pertaining to the interrelations of the previously
described three components. The primary question addressed here concerns the
coherence and directedness of dyads’ thinking as it relates to particular goals in the
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goal structure. In other words, do the co-occurrences and proximities among goals
and arguments or goals and calculations suggest a purpose or organized direction
for the problem solving? To address this question, we examined the co-occurrence
relations between goals and arguments and between goals and calculations (e.g., Is
a goal followed by an argument justifying it? Does a calculation relevant to a stated
goal follow that goal?). We determined the conditional relations among four
pairwise linkages: (a) Given a goal, what was the occurrence of an argument related
to the goal? (b) given an argument, what was the occurrence of a goal related to the
argument? (c) given a goal, what was the occurrence of a calculation relevant to
meeting the goal? and (d) given a calculation, what was the occurrence of a goal
that followed from the outcome of the calculation? For each dyad, the number and

 proportion of these contingencies were calculated. The conditional probability data
for each dyad are provided in Table 1.

Goal-to-argument linkages.  An argument may serve a number of functions
in relation to a goal—for example, as justification or evaluation of the goal.
Theoretically, the more arguments stated in relation to goals, the more likely that
dyads would be moving successfully through the problem space. There are two
ways to view goal-argument co-occurrences. The first examines arguments condi-

TABLE 1
Summary of Goal Statement and Argument Linkages
and Goal Statement and Calculation Linkages

Dyad P(Arg/Goal) P(Goal/Arg) P(Calc/Goal) P(Goal/Calc)

1 .86 .86 91 99
2 20 1.00 99 99
3 33 13 .50 00
4 69 .61 .50 .88
5 a5 21 67 33
6 At .61 T .86
7 29 .83 .50 .99
8 20 .83 .60 99
9 54 .83 82 .55
10 .29 .57 33 .50
11 .33 .80 43 99
12 44 43 67 -5
13 .50 .55 .29 99
14 67 15 .00 00
i5 78 .50 43 17
16 .99 .83 .99 .80
17 .99 .69 A .38
M .56 .61 .59 .69

Note. Arg = argument; Cale = calculation.
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tionalized on the occurrence of a goal. That is, given the occurrence of a goal
statement, did the particular dyad state one or more arguments related to that goal?
For example, Dyad 1 generated 18 goals, 12 of which have at least one argument
stated in relation to that particular goal. The following sequence of statements from
Dyad 1’s protocol illustrates a goal to argument linkage: “We need to see what
everything costs. It’s only for a day so the dunking machine will be for $25.00.”

The data in Table 1 indicate that, for the majority of dyads (10 out of 17), the
probability of a goal having related arguments was greater than .50. The overall
average was .56. These data indicate that the majority of goal statements were
followed by a related argument.

The second way to look at goal-argument links is to examine goals given the
occurrence of argument statements. In terms of problem solving, this conditional
relation differs from the first in the following way: Imagine a problem-solving
situation in which many arguments and counterarguments are made but there are
no obvious purposes for engaging in the debate. By examining the occurrence of a
related goal, given the occurrence of an argument, we assess the degree to which
argument statements were purposeful in directing the problem solving. The condi-
tional relation of goals given arguments differs from the first conditional relation
(i.e., arguments given goals) in that it looks at whether arguments led to the
formation or realization of new goals. For example, Dyad 2 generated 42 sound
arguments, 36 (86%) of which were related to goals. Thus, for this dyad, most
reasoning occurred around goals. The second column of Table 1 presents the
proportion of goal statements, given the statement of an argument. The mean
proportion of arguments leading to new goals is .61, and for 13 dyads more than
half of the argumient statements were purposeful. In Dyad 1, for example, one
student stated:

If they [fire department] were out on call, then they would have to get it
* [water] from somebody else, so let’s try to average out [calculate] what a
second person would be [cost] if they couldn’t get water from the fire people.

Also, Dyad 9 jointly stated “That’s $158. ... Oh!” followed by this comment by
one member of the dyad: “Let’s find something cheaper” ($158 was greater than
the $150 limit).

The data on goal-argument linkages indicate that dyad reasoning is coherent
with respect to goals and arguments. Goals tend to be followed by related argu-
ments, and problem solving does not tend to be characterized by purposeless
argumentation. Rather, argumentation leads to new goals.

Goal-to-calculation linkages. A similar logic applies to goal-calculation
. linkages. The higher the probability that a calculation occurred, given the statement
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of a goal to which the calculation was relevant, the more goal directed the problem
solving and the greater the likelihood of success. For example, Dyad 1 generated
11 goals, 10 of which were followed by at least one calculation. The results
presented in the third column of Table 1 indicate that the dyads were reasonably
goal directed in that the mean proportion of cases in which a calculation occurred
after the statement of a related goal was .59. For 12 dyads, the probability was .50
or greater that a goal statement was followed by at least one calculation. An example
of a goal to calculation linkage is the following: “And how much to set it up?
[students perform calculation]. And the cost is $7.00 an hour, so this would come
to $14.00.”

The second contingency examined is the probability that a calculation performed
to meet a specific goal led to the statement of a new goal. Computationally, this is
the occurrence of a goal given the occurrence of a calculation. The data provided
in Table 1 reveal that the mean proportion of goals stated, given a calculation, was
.69, and that, for 13 of the dyads, .50 or more of the outcomes of calculations set
up the conditions for stating new goals. Thus, for the most part, calculations
occurred in the service of active goals, and they advanced problem solving in that
they tended to lead to new goals being stated.

Correlational Analyses of Goals, Arguments, and
Calculations and Solution-Space Elements

The analyses just discussed indicate that, for the majority of dyads, there is
coherence or direction to the thinking and problem-solving process. We were also
interested in the degree to which the various indexes of process and problem solving
were interrelated. For example, was there a relation between the number of sound
arguments and successful performance on calculations? Or was there a relation
between the number of goals stated and successful performance on calculations?
To investigate these questions, we conducted correlational analyses among the
process measures derived from the protocols (e.g., number of goals, number of
correct computations, the conditional measures) and a global measure of the extent
of the solution space that each dyad explored. The latter was derived from the
analysis of the plan elements in the solution space and had a possible maximum of
10.! The correlational analyses speak to the issue of “individual” differences among
the dyads in that high correlations among the process measures indicate the degree

'Each dyad received one point for each of the following elements of the solution space that they
attempted to solve: dunking machine, labor for pool, pool rental, costs to fill the pool, time to fill the
pool, cost to empty the pool, time to empty the pool, if expenses were greater than $150, if estimated
revenue was less than twice the estimated expenses, and if multiple plans were considered. The
distribution of actual scores was 5 to 10 over the 17 dyads, (M =7.4).
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TABLE 2
Correlational Analyses for Indexes of Problem Solving in Experiment 2

SA cc SA/CG CG/SA CC/CG CG/CC EL
CG S54% 66+ 20 A1 24 38 19
SA 69%* 85%* -02 29 .10 .66+*
cC 59% 37 63%* 24 A5
SA/CG -11 22 =11 56%*
CG/SA 59% 8% _28
CCICG A4 12
CG/CC 45

Note. CG=correct goals; SA =sound arguments; CC = correct calculations; SA/CG =sound
arguments, given correct goals; CG/SA = correct goals, given sound argument; CC/CG = correct
calculations, given correct goals; CG/CC = correct goals, given correct calculations; EL = no.
of elements in the solution space (max. = 10).

*p < .05. ¥*p < .01,

to which indexes of sound argumentation and successful problem solving tend to
co-occur in the same dyads. Table 2 contains the correlation matrix.

We first consider the correlations among the independent occurrences of the
various indexes of the problem-solving process: frequency of stating correct
goals, frequency of stating sound arguments, and number of calculations cor-
rectly performed. There were significant correlations among all three of these
measures, (r = .54 for correct goals with sound arguments, r = .66 for correct
goals with correct calculations, and r = .69 for correct calculations with sound
arguments, ps < .05). These findings indicate that dyads who generated more
goals also tended to generate more sound arguments, and dyads who generated
more goals also tended to apply their mathematical skills successfully.

The correlations among these independent measures and the conditional meas-
ures further specify the nature of the problem solving. The relevant data are the
following: (a) the greater the number of sound arguments, the more likely they were
conditional on a relevant goal statement (r = .85); (b) the higher the frequency of
correct calculations, the greater the tendency for them to be conditional on a related
goal (r = .63); (c) the frequency of correct calculations was significantly correlated
with the frequency of sound arguments conditional on a goal (r = .59); and (d)
frequency of correct calculations conditional on a goal correlated significantly with
frequency of sound arguments conditional on a goal (r = .59).

The absence of significant correlations between the conditional measures and
the frequency of stating goals indicates that it is not “throwing out goals” that drives
coherence. Rather, coherent problem solving is characterized by sound reasoning
about goals in conjunction with correct application of mathematics skills in meeting
those goals. Coherent problem solving was also predictive of successful perform-
ance as indexed by the extent of the solution space that was attempted. Two process
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indexes, sound arguments and sound arguments conditional on goals, correlated
significantly with the solution-space measure (r = .66 and r = .56, respectively).
Correct calculations and the likelihood that correct calculations led to new goals
were correlated at nonsignificant levels (r= .45 in both cases) with attempting more
of the elements in the solution space.

The correlational data indicate that dyads were more successful in their problem
solving only if goals called forth sound reasoning and accurate calculations. Merely
doing correct calculations was insufficient to produce coherent solutions to the
problem, even if those calculations led to stating new goals. Hence, goal-directed
reasoning and application of mathematics skills are important. This conclusion is
consistent with previous data collected in the context of Jasper problem solving:
Students’ problem solving was hampered by difficulties identifying what data were
relevant to which goals rather than in generating the goals or doing isolated
computations on the data (CTGV, 1993, 1994). '

Reasoning Within the Dyads

The solution-space data showed that, overall, dyads attempted more of the
solution space than did individuals working alone. The correlational analyses of
the dyads’ goals, reasoning, and application of mathematics skills suggested that
the dyads differed with respect to the coherence and directedness of their problem
solving. Furthermore, those dyads with higher levels of sound reasoning in the
context of goal-directed solutions attempted more of the solution space. In this
section, we consider data relevant to two possible explanations for these effects.

First, working together may have engendered a situation in which each member
of the pair tried to be explicit about his or her thinking, verbalizing for the benefit
of one’s partner exactly what was being done and why. The act of explaining to the
other may have enhanced problem solving in and of itself. The function of these
argument statements was to explain the speaker’s thinking to the other member of
the pait. A second explanation for the foregoing pattern of results resides in asecond
function of working in dyads. We suggested in the introduction that one possible
benefit of working in dyads is that the members can monitor each other’s problem
solving. Arguments that show the monitoring function would reflect a reaction by
one member of the pair to a proposal made by the other member.

There is some evidence that argument statements served both explanation and
monitoring functions in the dyads in this study. The data indicate that 202 of 339,
or 60%, of the sound arguments were individually generated, and 137 of 339, or
40%, were generated by the second member of the pair. In the first case, arguments
are being supplied by the selfsame individual proposing a particular goal or
calculation. That is, they explain the speaker’s actions. In the second case, the
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argument generation serves the monitoring function and involves both members of
the dyad. We refer to these as dyad-generated arguments.

The dyad-generated arguments were divided into pro arguments and con argu-
ments. Dyad pro arguments consisted of the statement of a claim supported by a
reason—with each member of a dyad stating one part. Thus, the reason, stated by
Member 2, “They’d have to drive back and fill it up again,” provides support for
the claim of Member 1: “So they’d have to make two trips.” In dyad con arguments,
one partner disagreed with the other, typically by generating a counterclaim and
reason in opposition to the stated claim. For example, Member 1’s statement, ‘““The
fireman said the dunking machine rental was free,” was opposed by Member 2’s
counterargument, “No, [dunking machine rental is not free] because it says here
[fact sheet] dunking machine rental is $25 a day.”

Examination of the data revealed that 45 of 137, or 33%, of the dyad-gener-
ated arguments involved one partner supporting the other, whereas 67% of the
dyad arguments consisted of those in which the participant disagreed with his
or her partner. The majority of dyad-generated arguments functioned to monitor
and redirect the course of problem solving, consistent with the findings of
Howe, Tolmie, Greer, and Mackenzie (1995). Classification of these arguments,
using the classification scheme discussed earlier, revealed that 53% of the
dyad-generated arguments involved disputing the “facts” that the other had
proposed. Only 21% were about calculations, and 13% were about metacogni-
tive issues. These results indicate that an important dyad monitoring function
involved extracting accurate data from the story and establishing its relevance
to the goal.

The analyses of the dynamics of the argumentation in the dyads revealed that
reasoning processes involved both explanation of one’s position and disputation of
the other member’s problem solving. The overall effect of these interactions was
to encourage broader exploration of the solution space for expenses and to assist
with determining which data were accurate and relevant to which goals. This
enabled dyads to more successfully attempt and solve a number of the elements of
the solution space.

Summary of Experiment 2

The dyads’ problem solving tended to be relatively complete with respect to
exploring elements of the solution space for expenses, especially with regard to
optimization and constraint consideration. Approximately 75% of the dyads con-
sidered multiple plans and one or both of the financial constraints on the business
plan. The goals, reasoning, and application analysis of the dyads’ problem solving
indicated that the more coherent the problem-solving process, the more solution-
space elements considered. Characteristics of more coherent problem solving were
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sound reasoning about goals in conjunction with the correct execution of appropri-
ate computational procedures on the relevant data. Sound reasoning involved
individual members of the dyad offering explanations of claims they made as well
as counterclaims offered by the other member of the dyad. This dialogic process
enriched and broadened the extent of the problem-solving process.

GENERAL DISCUSSION

One of the primary concerns of this research is the development of a methodology
for characterizing and describing problem solving in very complex situations. For
the complex problem situations studied in this research, we adopted a technique
that used modified planning net representations to specify the major elements of
the space and the relations and constraints among them. We then mapped informa- -
tion obtained from think-aloud protocols (Experiment 1) or dyadic interactions
(Experiment 2) onto the elements and relations in the planning net representation. -
Our investigation in this context focused on the business-planning domain. In
developing business plans, it is necessary to consider the relation between revenue
and expenses, attempting to optimize profit while still delivering a feasible plan.

The data from Experiment 1 indicate that, although college-age individuals are
aware of many constraints on business plans, their problem solving does not always
or accurately take these elements into account. In contrast to sixth graders, college
students’ solutions were characterized by higher frequencies of successfully at-
tempting to deal with all plan elements. Among both sixth graders and college
students, success was constrained by conceptual understanding of certain mathe-
matical concepts (e.g., proportional reasoning), incomplete consideration of some
of the financial constraints, and a tendency to overlook feasibility (i.e., timing)
issues in their plans. Merely changing the domain from trip-planning to business-
planning, in which constraints are more explicit, did not substantially alter our
conclusion about the presence of little spontaneous consideration of multiple plans
by middle school age students (e.g., CTGV, 1994). The business-planning domain
did enhance multiple plan consideration by college-age students.

Complex problem solving of the type required to solve a Jasper adventure is a
relatively new experience, even for high-achieving mathematics students. Their
performance frequently reflected incomplete rather than inaccurate problem solv-
ing. As might be expected from this caliber of math student, few of their errors were
due to calculation problems.

Experiment 1 provided information about the extent of the solution space
considered by individuals working alone, but the think-aloud protocols did not
contain sufficient information to understand fully individuals’ reasoning processes.
Experiment 2 was designed to make thinking more visible by creating a dyad
situation with a need to communicate. Dyads tended to do arelatively thorough job
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of exploring different elements of the solution space for expenses: Almost all of
them considered feasibility and optimization (multiple plans), although the success
with which they dealt with these issues was far from perfect. For example, for those
plans that involved costs, the problem solving of all but one dyad led to an inaccurate
solution. The errors most often reflected omission of an element or formulating the
mathematical relations inappropriately.

In addition to examining the extent of the solution space that was considered,
we examined the coherence of problem solving via analyses of goals, arguments,
calculations, and contingency relations among them. Our analyses of the reasoning
processes indicated that dyad reasoning was coherent with respect to goals and
arguments. Goals tended to be followed by related arguments, and the problem
solving did not tend to be characterized by purposeless argumentation. Although
the number of goals and arguments was highly variable, for the majority of dyads,
there was coherence or direction to the thinking and problem-solving process. The
contingency and correlational analyses indicate that coherent and successful prob-
lem solving is not predicted merely by the number of goals. What is predictive is
sound reasoning about those goals and the correct execution of appropriately
selected mathematical operations. In other words, what is important to successful
problem solving is goal-directed reasoning and application of mathematics skills.

Dyadic interactions that supported goal-directed reasoning and application had
two characteristics: explanatory reasoning and monitoring via pro and con coun-
terarguments. Dyads differed with respect to the goal directedness of their solutions.
The dialogic of the reasoning involved both explanations and countersuggestions.
Both kinds of reasoning served a monitoring function and enhanced the extent of
the solution space that was considered during problem solving.

Although there were a number of differences between the problem-solving
situations in Experiments 1 and 2, it is noteworthy that the performance of the
fifth-grade students in Experiment 2 looked similar to that of the college students
in Experiment 1. This was true for the extent to which they explored the problem
solution space and for the patterns of errors they made. The interaction data
suggested that the explanation for the similarities across fifth-grade and college
students may be in the degree to which members of a dyad can monitor the solution
process and keep in mind the constraints and search space relevant to the problem.
Members of the dyad may fluidly adopt different roles in problem solving as they
switch between being listener and speaker in the verbal interaction. Listening from
the perspective of checker, reflector, or coach (Kagan, 1992) may be an important
function of the nonspeaking dyad member. These interpretative speculations are
consistent with potential explanatory mechanisms for the value of peer interaction
recently suggested by Webb and Palincsar (1996) in their review of group processes
in the classroom.

What are the implications of these findings vis-a-vis mathematical problem
solving in classroom settings? One of the goals of the Jasper series is to provide
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meaningful problems for students to solve that capture the intricacies of real-world
mathematical problem solving. By this we mean problems that are multistep, need
formulation, have more than one solution, and involve optimization. The findings
suggest that current educational practices do not prepare students well for solving
these types of problems. College and middle school students in these studies were
good calculators but, from our perspective, were relatively weak problem solvers.
They frequently omitted important plan elements, failed to test their solutions
against constraints, and usually considered only one plan. Furthermore, even the
dyads whose protocols we characterized as locally coherent (as defined by state-
ment pairs) did not verbalize an overall plan for solving the challenge; that is, they
did not first articulate an ordered set of goals and subsequently evaluate their
progress relative to these goals. Students’ paper artifacts also suggest a lack of
planning. Students tended to write anywhere on the page and did not label their
answers or otherwise document their work. As a consequence, students frequently
lost track of what they had already done.

We argue that more materials that afford these kinds of complex problem-solv-
ing experiences are needed. The Jasper materials represent one set of curriculum
resources, but there are other excellent examples of ways to enrich problem-solving
activities in classrooms. We have in mind work by Resnick and Bill (e.g., Resnick,
Bill, Lesgold, & Leer, 1991), Ball (1993), Cobb, Yackel, and Wood (e.g., Cobb,
Wood, & Yackel, 1991; Cobbetal., 1992; T.Woodetal., 1992; T. Wood & Yackel,
1990; Yackel, Cobb, & Wood, 1991), and Lampert (1990). Recent work on
project-based learning also holds promise (elsewhere we discuss effective design
features of projects; see Barron et al., 1995; Barron et al., 1996).

Although this research was conducted in a laboratory setting, we believe that
our results have implications for collaborative problem solving in classroom
settings. Our findings indicate that, in the absence of instruction, some students will
interact with their peers in ways that promote exploration of the problem space and
its solution. Even among our sample of high-achieving mathematics students,
however, there were individual differences in their patterns of interaction. We
would expect similar variation among average- and low-achieving students and,
consequently, that many students could benefit from intervention on effective
collaborative communication.

What are the instructional supports in traditional classrooms that might help
students acquire effective patterns of argumentation? We argue that current
practices in many, if not most, mathematics classrooms are not supportive of the
kind of peer interaction that was predictive of more successful problem solving
in this research. (We are referring to classrooms where more traditional, direct
instruction is the norm; we are not referrring to constructivist-oriented classrooms
where conjecture and argumentation are fundamental to classroom discussions.)
For example, the discourse that is the norm in traditional whole class discussions
" tends to focus on teachers telling or eliciting the telling of rote procedures for
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manipulating numbers in order to produce “correct answers.” There is virtually
no peer-to-peer interaction, and there is little emphasis on understanding the
underlying mathematics concepts and procedures. These types of whole class
discussions are poor models for how students might best interact with their peers
in small groups. Furthermore, small group collaborative work in classrooms is
often tutorial in nature; teachers pair students so that one student who has mastered
a rote procedure can tell the other student the appropriate steps to follow to find
“the” answer. Again, there is a disjuncture between the norms often operative in
the tutorial situation and the norms that we think will be supportive of effective
argumentation patterns. Note that our assumption is that effective argumentation
needs to be established as a classroom norm. If there are norms in place in some
activity structures, such as whole class discussions, which are inconsistent with
patterns of effective argumentation, it will be difficult to establish other norms in
small collaborative groups.

We assume that the norms for discourse in whole class discussions can and
should be similar to the discourse patterns of the effective dyads in Experiment 2.
We further assume that classroom norms that best support effective coilaboration
will be consistent with constructivist-oriented pedagogy.” We speculate that, to
promote effective interactions, it will be important to emphasize deep under-
standing-of concepts and procedures. When students are engaged in the process of
sense making, it is functional for students to share their conceptions and to react to
the conceptions of other students (Goldman, 1997; Secules et al., 1997; Vye etal.,
in press). In contrast, discussions about rote procedures or algorithms will, almost
by definition, focus on the “right way” to do it rather than engage reasoning and
problem-solving processes. We also assume that teachers will need to set expecta-
tions and model certain behaviors for their students in both whole class and small
group settings; for example, to emphasize that students listen and react to the
thoughts of their peers, explain their answers and thinking, and conjecture about
concepts or strategies.” We assume that teachers will need to remove themselves
from the role of intellectual authority of the classroom. They will need to scaffold
peer interactions in such a way that students come to appreciate that they canresolve
differences of opinions and draw appropriate conclusions without appealing to the
teacher for the “right answer.”

*We are grateful to one anonymous reviewer for pointing out the importance of engaging in
conjecture that, in this context, we take to mean a willingness to articulate one’s perspective in the face
of some uncertainty and to reason about ways to validate or evaluate this perspective. We agree that
effective argumentation does not simply involve “telling what you know.”

®As one anonymous reviewer of this article pointed out, the whole class discourse in Deborah Ball’s
(e.g., Ball & Rundquist, 1993) mathematics classroom is exactly the sort that occured with the dyads in
this study.
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_APPENDIX
Portion of the Expanded Goal Structure Used in Goals,
Reasoning, and Arguments Analysis

Evaluate acceptable plans with respect to profit, risk, and conservation
Estimate profit
Fire department
School hose
Pool truck
Pool truck and school hose
Determine risk to fill pool
Risk for fire department option
Determine conservation problems
Problem of letting water run out on the ground
Estimate income by extrapolation ($270.00)
Determine no. of students at school (380 — 20)
Determine extrapolation factor (360/60)
Determine ticket price that yields highest income ($1,000)
Find sample income at each price
Sample income at $.50 ($29.00)
Sample income at $1.00 ($45.00)
Sample income at $1.50 (24 x $1.50)
Sample income at $2.00 (8 x $2.00)
Find no. of students at each price
No. of students at $.50 (58)
No. of students at $1.00 (45)
No. of students at $1.50 (16 + 8)
No. of students at $2.00 (8)
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