
8. Graphics Programming

8.1 Introduction
What is graphics programming?
Objectives

8.2 Showing Graphics Objects
The plot as a side-effect
Showing plots
Exercise

8.3 The FullForm of a Graphics Object Expression
The internal representation of a graphics object
Extracting the points of a graphics object
Exercises

8.4 Two Dimensional Graphics Primitives
Defining graphics primitives
Exercises

8.5 Graphics Options
Extracting graphics options
Setting graphics options
Modifying options with Show
Exercises
AbsoluteOptions
Exercise

8.6 Style Directives
Using graphics style directives
Color
Exercises
Point size
Exercise
Thickness
Exercises

8.7 Controlling Graphic Output
Graphic displays as side-effects
Exercise

8.8 Graphics Packages
Exploring graphics packages
Exercises

2001 10 30 © John Browne 2001

8.9 Graphics Arrays
Showing an array of graphics images
Exercise

8.10 Animation
Generating an animation sequence
Generating a spin sequence
Exercises

8.11 Problems
Problem 1: Modifying the points of a plot
Problem 2: Further modification of the points of a plot
Problem 3: Generating random graphics displays
Problem 4: Picking off graphics coordinates
Problem 5: Using color directives
Problem 6: Viewing plots from different angles
Problem 7: Generating graphics arrays
Problem 8: A function which generates a graphics array

8.1 Introduction

What is graphics programming?

In the Mathematica programming language, the complete information required for the software
to render a graph, or graphics object is an expression, just like everything else. Thus, we can
manipulate graphics objects just like we have been manipulating other expressions.

Some of the things you can do are
• Combine plots together.
• Create your own combination of graphics objects (lines, circles, text, …).
• Add titles, grids, new scales, thicker lines, … to plots.
• Add colour.
• Work in 2 or 3 dimensions.
• Perform image analysis.

Most often you will be designing a function which takes some input, and generates a plot of
some sort

Just as the command Plot produces a two-dimensional Graphics object, all the graphics
commands produce different graphics objects. The types of graphics object are

• Graphics For 2D graphics
• Graphics3D For 3D graphics
• SurfaceGraphics For graphics showing surfaces of 3D objects
• ContourGraphics For showing contour plots of 3D surfaces
• DensityGraphics For plotting a variable as print density rather than height
• GraphicsArray For plotting arrays of graphs

We begin by exploring 2D graphics.

8. Graphics Programming 2

2001 10 30 © John Browne 2001

Objectives

• To understand how graphics objects are encoded in Mathematica
• To be able to write functions which produce a graphic output without unwanted graphic side-
effects
• To be able to use graphics options and style directives
• To be familiar with Mathematica's animation capabilities
• To be familiar with Mathematica's graphics packages

8.2 Showing Graphics Objects

The plot as a side-effect

We start with a simple plot.

p = Plot[Sin[x],{x,0,2Π}]

1 2 3 4 5 6

-1

-0.5

0.5

1

� Graphics �

The first thing to understand is that the actual plot that we see, that is

1 2 3 4 5 6

-1
-0.5

0.5
1

, is
only produced by the Kernel for our benefit to see, and is no more than a side-effect of the
output of the graphics object expression. The graphics object expression is given by the output
�Graphics� under the plot, which we have assigned to the value p.

If we enter p, we simply get back �Graphics�.

p

� Graphics �

8. Graphics Programming 3

2001 10 30 © John Browne 2001

Showing plots

If you want to see the plot represented by the expression p, you have to ask Mathematica to
Show it to you.

Show�p�

1 2 3 4 5 6

-1

-0.5

0.5

1

� Graphics �

If you have several plots p1 , p2 , p3 , …, you can show them all overlaid on top of each other
with Show�p1, p2, p3, …� . For example

p1 � Plot�Sin�x�, �x, 0, 2�Π��;
p2 � Plot�Cos�x�, �x, 0, 2�Π��;
p3 � Plot�Tan�x�, �x, 0, 2�Π��;

Show�p1, p2, p3�

1 2 3 4 5 6

-6

-4

-2

2

4

6

� Graphics �

Show plots p1 , p2 , p3 , …, with Show[p1 , p2 , p3 , …] or Show[{p1 , p2 , p3 , …}]

• Plots can be resized by clicking on them to select them, and then dragging one of the handles
you see.
• You can also copy and paste them into text.

8. Graphics Programming 4

2001 10 30 © John Browne 2001

Exercise

� Exercise: Constructing multiple plots

Construct a plot which shows all the polynomial functions of the form xn , with n an integer
ranging from 1 to 8, over the range of x from -1 to 1.

�

8.3 The FullForm of a Graphics Object Expression

The internal representation of a graphics object

First we need to understand how Mathematica represents graphics objects internally as
expressions. We have already encountered this earlier when we were discussing FullForm
and we have seen how we could use a rule to rotate and reflect a plot. We now look at this
representation a little more deeply.

Because the graphics object expression is usually a large (sometimes very large) expression,
Mathematica by default only shows you its full form when you ask it to. If we ask for the
graphics object p defined in the previous section we get:

p

� Graphics �

Try generating a plot, assigning it to p, and then entering FullForm[p]. You have already
seen this sort of FullForm output, but it is not very readable in this form.

So that we can understand the structure of this expression, we make it easier to read by using
NumberForm to shorten the number of digits shown in the numbers (in this case we choose to
display 3 digits). (Note that NumberForm only displays the numbers with less digits.
Internally, they are not changed).

(In order to be able to play with the expression without Mathematica interfering due to its
special way of handling graphics objects, we also need to temporarily replace the symbol
Graphics with the symbol graphics. (But keep in mind that this is just a trick to let us see
inside the workings of a graphics object, and the real head of a graphics object expression is
Graphics (with a capital G!)))

Now let us see what the graphics object expression for p looks like.

pp � NumberForm��p �. Graphics � graphics�, 3�
graphics�
��Line���2.62� 10�7, 2.62�10�7�, �0.255, 0.252�, �0.533,

0.508�, �0.794, 0.713�, �1.05, 0.865�, �1.17, 0.922�,

8. Graphics Programming 5

2001 10 30 © John Browne 2001

�1.25, 0.948�, �1.31, 0.967�, �1.38, 0.982�,
�1.42, 0.988�, �1.45, 0.993�, �1.47, 0.995�,
�1.49, 0.996�, �1.5, 0.998�, �1.52, 0.999�,
�1.53, 0.999�, �1.53, 0.999�, �1.54, 1.�, �1.55, 1.�,
�1.55, 1.�, �1.56, 1.�, �1.56, 1.�, �1.57, 1.�,
�1.58, 1.�, �1.59, 1.�, �1.59, 1.�, �1.6, 1.�,
�1.6, 0.999�, �1.62, 0.999�, �1.63, 0.998�,
�1.65, 0.997�, �1.68, 0.994�, �1.72, 0.99�,
�1.78, 0.979�, �1.84, 0.965�, �1.97, 0.922�,
�2.09, 0.868�, �2.35, 0.709�, �2.6, 0.512�,
�2.87, 0.266�, �3.13, 0.0121�, �3.4, �0.259�,
�3.67, �0.502�, �3.92, �0.703�, �4.05, �0.788�,
�4.19, �0.867�, �4.33, �0.926�, �4.45, �0.966�,
�4.52, �0.981�, �4.55, �0.987�, �4.58, �0.992�,
�4.61, �0.995�, �4.64, �0.998�, �4.66, �0.999�,
�4.67, �0.999�, �4.68, �0.999�, �4.68, �1.�,
�4.69, �1.�, �4.7, �1.�, �4.71, �1.�, �4.72, �1.�,
�4.72, �1.�, �4.73, �1.�, �4.73, �1.�, �4.74, �1.�,
�4.75, �0.999�, �4.76, �0.999�, �4.77, �0.998�,
�4.79, �0.997�, �4.81, �0.996�, �4.84, �0.992�,
�4.87, �0.988�, �4.9, �0.982�, �4.97, �0.966�,
�5.04, �0.946�, �5.11, �0.922�, �5.23, �0.868�,
�5.49, �0.715�, �5.76, �0.503�, �6.02, �0.264�,
�6.27, �0.0164�, �6.28, �2.62� 10�7�����,

�PlotRange � Automatic, AspectRatio �
1

��������������������������������
GoldenRatio

,

DisplayFunction � $DisplayFunction,
ColorOutput � Automatic,
Axes � Automatic,
AxesOrigin � Automatic,
PlotLabel � None,
AxesLabel � None,
Ticks � Automatic,
GridLines � None,
Prolog � ��,
Epilog � ��,
AxesStyle � Automatic,
Background � Automatic,
DefaultColor � Automatic,
DefaultFont � $DefaultFont,
RotateLabel � True,
Frame � False,
FrameStyle � Automatic,
FrameTicks � Automatic,
FrameLabel � None,
PlotRegion � Automatic,
ImageSize � Automatic,
TextStyle � $TextStyle,

F tT $F tT ��

8. Graphics Programming 6

2001 10 30 © John Browne 2001

This has the simple form

Graphics���Line���x1, y1�, �x2, y2�, …����,
�Option1 � value1, Option2 � value2, …��

Or more simply, for two-dimensional graphics

Graphics��graphics primitives�, �options��

So, in order to understand Graphics objects, we only need to understand graphics primitives
and options.

Extracting the points of a graphics object

Because of the adaptive sampling routine used by the Plot function, the coordinate points in
the graphics object expression are well spaced to give a smooth curve, that is, they are more
closely spaced where the curvature is highest.
Such a set of points can be useful in other circumstances. We can easily extract them from the
Graphics object:

p = Plot[Sin[x],{x,0,2Π}]

8. Graphics Programming 7

2001 10 30 © John Browne 2001

points � p��1, 1, 1, 1��
��2.61799 �10�7, 2.61799 �10�7�,
�0.25489, 0.252139�, �0.532869, 0.508007�,
�0.793939, 0.71312�, �1.04501, 0.864929�,
�1.17413, 0.922355�, �1.24595, 0.947701�,
�1.31226, 0.966765�, �1.37966, 0.981789�,
�1.41517, 0.987915�, �1.45282, 0.993049�,
�1.46855, 0.994777�, �1.48546, 0.996361�,
�1.50009, 0.997501�, �1.51605, 0.998502�,
�1.52572, 0.998984�, �1.53469, 0.999348�,
�1.54327, 0.999621�, �1.54766, 0.999732�,
�1.55242, 0.999831�, �1.5571, 0.999906�,
�1.5614, 0.999956�, �1.56987, 1.�, �1.57756, 0.999977�,
�1.58569, 0.999889�, �1.59373, 0.999737�,
�1.59828, 0.999622�, �1.60249, 0.999498�,
�1.6184, 0.998867�, �1.63286, 0.998075�,
�1.64822, 0.997004�, �1.68008, 0.994035�,
�1.71525, 0.989585�, �1.77763, 0.978685�,
�1.8362, 0.964986�, �1.96935, 0.921622�,
�2.09144, 0.867501�, �2.35285, 0.709467�,
�2.60427, 0.511842�, �2.87186, 0.266474�,
�3.12945, 0.0121375�, �3.40323, �0.258662�,
�3.667, �0.501569�, �3.92078, �0.702701�,
�4.04933, �0.788113�, �4.19073, �0.866996�,
�4.32504, �0.925913�, �4.45069, �0.965952�,
�4.51935, �0.981426�, �4.55317, �0.987352�,
�4.58453, �0.991837�, �4.61287, �0.995052�,
�4.64304, �0.997597�, �4.66029, �0.998643�,
�4.66875, �0.999048�, �4.67652, �0.999357�,
�4.68347, �0.999582�, �4.69109, �0.999773�,
�4.69875, �0.999907�, �4.70683, �0.999985�,
�4.71547, �0.999995�, �4.72345, �0.999939�,
�4.72762, �0.999884�, �4.73221, �0.999803�,
�4.74151, �0.999576�, �4.74967, �0.999305�,
�4.75845, �0.998939�, �4.77433, �0.998082�,
�4.78997, �0.996992�, �4.80641, �0.995583�,
�4.83579, �0.992395�, �4.87, �0.987606�,
�4.90178, �0.982119�, �4.97386, �0.96601�,
�5.04347, �0.945692�, �5.10909, �0.92234�,
�5.2318, �0.86811�, �5.48592, �0.715447�,
�5.75622, �0.502911�, �6.01652, �0.263515�,
�6.26682, �0.0163632�, �6.28319, �2.61799� 10�7��

Here, the input p[[1,1,1,1]] asks for the first element of the first element of the first
element of the first element of p. Check that this is what we got!

Now, if we ListPlot these points, we can see how the adaptive algorithm has chosen them

8. Graphics Programming 8

2001 10 30 © John Browne 2001

ListPlot[points]

1 2 3 4 5 6

-1

-0.5

0.5

1

� Graphics �

Exercises

� Exercise: Extracting points from a plot

Extract the points from the Plot of Exp[-x] Cos[2Π x]where x runs from 0 to 4.
ListPlot the result.

� Exercise: Modifying a plot by modifying its points

Take the list of points above and modify the coordinates with a small random perturbation
between ±5% of the coordinate. ListPlot the result.

�

8.4 Two Dimensional Graphics Primitives

Defining graphics primitives

Graphics primitives are simple two dimensional geometric objects like points, lines, polygons,
rectangles, circles, disks, and even text placed at a point.

To show how these work we let pt be a point with random coordinates between 0 and 1.

pt := {Random[],Random[]}

We can now generate some graphics objects using these primitives

8. Graphics Programming 9

2001 10 30 © John Browne 2001

g1 := Graphics[Point[pt]];
g2 := Graphics[Line[{pt,pt,pt,pt,pt,pt,pt,pt}]];
g3 := Graphics[Polygon[{pt,pt,pt,pt,pt}]];
g4 := Graphics[Rectangle[pt,pt]];
g5 := Graphics[Circle[pt,0.3]];
g6 := Graphics[Disk[pt,0.1]];
g7 := Graphics[Text["Hey!!",pt]];

Note that in order for them to be able to be rendered and displayed on the screen , we must have
the object Graphics as the Head of each graphics expression. These can all then be shown
together with the Show command.

Show[g1,g2,g3,g4,g5,g6,g7]

Hey��

� Graphics �

Because the points on which this display is based are random different each time
Show[g1,g2,g3,g4,g5,g6,g7] is entered.

Show[g1,g2,g3,g4,g5,g6,g7]

Hey�

� Graphics �

You will notice that the primitives that were supposed to be circles and disks have come out
elliptical. This is because the default aspect ratio of a Graphics object is not 1:1. We can easily
change this with an option. We will see how to do this next.

Exercises

� Exercise: Using graphics primitives

Create a collection of superimposed geometric objects using the graphics primitives Line,
Polygon, and Circle.

8. Graphics Programming 10

2001 10 30 © John Browne 2001

� Exercise: Drawing with Line

Create an object called letter which draws an object of the form .

� Exercise: Drawing a composite object

Create an object called letterToJulius which draws an object of the form

Julius Caesar
The Necropolis
Rome

� Exercise: Modifying the points of a plot

Extract the points from the Plot of Exp[-x] Cos[2Π x]where x runs from 0 to 4. Replace
each point with a circle of radius 0.03 centered on the point. Use Show on the resulting list of
Graphics objects to show the circles. (They will come out as ellipses. Don't worry about this
for now).

� Exercise: Modifying plots

Using your results from the previous exercise, construct a plot in which the circles are overlaid
onto the original plot.

�

8.5 Graphics Options

Extracting graphics options

If we look back at the Graphics object of the simple plot p that we made of the Sin function at
the beginning of this topic we will see that apart from the graphics primitive Line, we have a
list of rules as the last element. We can extract this with Last.

8. Graphics Programming 11

2001 10 30 © John Browne 2001

p = Plot[Sin[x],{x,0,2Π}]

1 2 3 4 5 6

-1

-0.5

0.5

1

� Graphics �

Last�p�

�PlotRange � Automatic, AspectRatio �
1

��������������������������������
GoldenRatio

,

DisplayFunction � $DisplayFunction, ColorOutput � Automatic,
Axes � Automatic, AxesOrigin � Automatic,
PlotLabel � None, AxesLabel � None, Ticks � Automatic,
GridLines � None, Prolog � ��, Epilog � ��,
AxesStyle � Automatic, Background � Automatic,
DefaultColor � Automatic, DefaultFont � $DefaultFont,
RotateLabel � True, Frame � False, FrameStyle � Automatic,
FrameTicks � Automatic, FrameLabel � None,
PlotRegion � Automatic, ImageSize � Automatic,

TextStyle � $TextStyle, FormatType � $FormatType�

These rules are called Options.
They control the fine detail of the way a graphics object is displayed on the screen.

Because, in generating p, we did not ask the Plot function to use any Options, the list above
just applies the default values (the values on the right hand side of the �).

An easier way to look at the options to a Graphics object is simply to use the command
Options.

Options�p�

�PlotRange � Automatic, AspectRatio �
1

��������������������������������
GoldenRatio

,

DisplayFunction � $DisplayFunction, ColorOutput � Automatic,
Axes � Automatic, AxesOrigin � Automatic,
PlotLabel � None, AxesLabel � None, Ticks � Automatic,
GridLines � None, Prolog � ��, Epilog � ��,
AxesStyle � Automatic, Background � Automatic,
DefaultColor � Automatic, DefaultFont � $DefaultFont,
RotateLabel � True, Frame � False, FrameStyle � Automatic,
FrameTicks � Automatic, FrameLabel � None,
PlotRegion � Automatic, ImageSize � Automatic,

TextStyle � $TextStyle, FormatType � $FormatType�

8. Graphics Programming 12

2001 10 30 © John Browne 2001

Setting graphics options

Now let us recreate a new p (called pp) with some options which we set ourselves:

pp � Plot�Sin�x�, �x, 0, 2�Π�, Frame � True,
GridLines � Automatic, PlotLabel � "sin�t�",
AxesLabel � �t, A�, FrameLabel � �"Time", "Amp"�,
RotateLabel � False, DefaultFont � �"Times", 12 �,
FormatType � TraditionalForm, Background � GrayLevel�0.8�,
DefaultColor � RGBColor�0.43, 0.065, 0.09�, ImageSize �
200, PlotStyle � �CMYKColor�0, 1, 0, 0�, Thickness�0.02���

0 1 2 3 4 5 6
Time

�1

�0.5

0

0.5

1

Amp t

sin�t�

� Graphics �

If we look at the expression behind pp we will see that for the options we included above,
instead of the default values, it has the values we specified.

As practice, we get Mathematica to pick out the options which have changed by using some list
operations. The default ones are on the left. The new ones are on the right.

ip � Intersection�Last�p�, Last�pp��;
TableForm�Transpose�
�Complement�Last�p�, ip�, Complement�Last�pp�, ip����

AxesLabel � None AxesLabel � �t, A�
Background � Automatic Background � GrayLevel�0.8�
DefaultColor � Automatic DefaultColor � RGBColor�0.43,
Frame � False Frame � True

FrameLabel � None FrameLabel � �Time, Amp�
GridLines � None GridLines � Automatic

ImageSize � Automatic ImageSize � 200

PlotLabel � None PlotLabel � sin	t

RotateLabel � True RotateLabel � False

DefaultFont � $DefaultFont DefaultFont � �Times, 12�
FormatType � $FormatType FormatType � TraditionalForm

We will look at the PlotStyle option next sections where we discuss colour and line
thickness .

8. Graphics Programming 13

2001 10 30 © John Browne 2001

Inspection will show the new option values have been incorporated.

Options�pp�

�PlotRange � Automatic, AspectRatio �
1

��������������������������������
GoldenRatio

,

DisplayFunction � $DisplayFunction, ColorOutput � Automatic,
Axes � Automatic, AxesOrigin � Automatic,
PlotLabel � sin	t
, AxesLabel � �t, A�, Ticks � Automatic,
GridLines � Automatic, Prolog � ��, Epilog � ��,
AxesStyle � Automatic, Background � GrayLevel�0.8�,
DefaultColor � RGBColor�0.43, 0.065, 0.09�,
DefaultFont � �Times, 12�, RotateLabel � False,
Frame � True, FrameStyle � Automatic,
FrameTicks � Automatic, FrameLabel � �Time, Amp�,
PlotRegion � Automatic, ImageSize � 200,

TextStyle � $TextStyle, FormatType � TraditionalForm�

Modifying options with Show

We can also modify options at the stage of using the Show command. For example when we
generated the random display of graphics primitives, we could have ensured the circle and disc
came out the right shape by setting the aspect ratio to 1 by using AspectRatio�1 as an
option to the Show command.

Show�Graphics�Circle��1, 1�, 0.3��,
AspectRatio � 1, Frame � True, FrameTicks � None�

� Graphics �

Exercises

� Exercise: Labeling axes

Make a Plot with labeled axes.

� Exercise: Coloring backgrounds

Make a Plot with a coloured background.

8. Graphics Programming 14

2001 10 30 © John Browne 2001

� Exercise: Adding frames and labelling them

Make a Plot with a frame and frame label.

� Exercise: Adding gridlines

Make a Plot with GridLines, a plot label and a default font of 14 pt Times.

� Exercise: Modifying density plots

Generate a DensityPlot of Sin[x y], with x and y ranging from -2Π to 2Π.

Use a PlotPoints option of 50.

Obtain the Options to DensityPlot and replot it with the Mesh removed.

� Exercise: Modifying parametric plots

Generate the three-dimensional parametric plot:

ParametricPlot3D��Sin�t�, Cos�t�, t� 6�, �t, 0, 25��
Replot it with the box and axes removed.

� Exercise: Further modifying of parametric plots

Plot the following graphic:

ParametricPlot3D��Cos�t� Cos�u�, Sin�t� Cos�u�, Sin�u��,
�t, 0, 2�Π�, �u, �Π � 2, Π � 2��

Replot it with the axis ticks removed, face grids added, and more plotted points.

�

AbsoluteOptions

You can use the command AbsoluteOptions[graphics object] to give the absolute
settings used by Mathematica in drawing the graphics object or plot. This may help you
understand how to change the options to get what you want.

8. Graphics Programming 15

2001 10 30 © John Browne 2001

Exercise

� Exercise: Exploring absolute options

Obtain the list of absolute options for Plot[Sin[x],{x,0,2 Π}]. Regenerate the Plot
with some options applied to it. Obtain the new list of absolute options. Identify the changes in
the new list due to the options you applied to the Plot.

�

8.6 Style Directives

Using graphics style directives

A graphics style directive causes a change in the style in which the primitives are rendered.
They change the colour, the size of points, the thickness of lines, or make the lines dashed.

For a number of objects, each with different style directives you can use the form

Show�Graphics���style directives, object�,
�style directives, object�, …��, overall options�

If one set of style directives applies to several different objects, you can use the form

Show�Graphics��style directives, object, object, …��,
overall options�

Or you can use combinations of these two forms.

We will now explore some of the more common style directives.

Color

You can color a Graphics object by using the graphics directive RGBColor. (Note carefully
the spelling of Color.

For example we can display a red disk by entering

8. Graphics Programming 16

2001 10 30 © John Browne 2001

Show�Graphics��RGBColor�1, 0, 0�, Disk��0, 0�, 1��,
AspectRatio � Automatic, ImageSize � 100��

� Graphics �

We can display a red disk and a green disk by writing a different colour directive with each disk
object.

Show�Graphics���RGBColor�1, 0, 0�, Disk��0, 0�, 1��,
�RGBColor�0, 1, 0�, Disk��1, 0�, 1����,

AspectRatio � Automatic, ImageSize � 100�

� Graphics �

Or, we could have displayed three blue disks with the one colour directive

Show�Graphics��RGBColor�0, 0, 1�,
Disk��0, 0�, 1�, Disk��1, 0�, 1�, Disk��2, 0�, 1���,

AspectRatio � Automatic, ImageSize � 100�

� Graphics �

Note that the disks must now be drawn smaller to keep the overall ImageSize option to the
same value of 100.

By making a table of graphics objects like this, we can splatter the page with coloured disks.

8. Graphics Programming 17

2001 10 30 © John Browne 2001

Show�Graphics�Table��RGBColor�Random��, Random��, Random���,
Disk��Random��, Random���, Random�� �10��, �100���,

AspectRatio � Automatic�

� Graphics �

Selecting your colours

The best way to select your colours is to use the Color Selector. Go to the menu Input: Color
Selector, select your colour and then click OK. Your RGBColor values will be pasted into your
notebook wherever your cursor is.

GrayLevel

GrayLevel[lightness] (Note carefully the spelling!) gives a gray colour, with the
argument lightness going from 0 (black) to 1 (white).

Exercises

� Exercise: Showing random arrays of colored objects

Show a random array of randomly coloured rectangles.

8. Graphics Programming 18

2001 10 30 © John Browne 2001

� Exercise: Using color styles in plots

Plot a graph using the Background, DefaultColor, and PlotStyle options with values
of these options being RGBColors that you have selected using the Color Selector.

�

Point size

You can change the point size of point by using the Graphics directive PointSize.

For example, to show a point of size 0.2 (that is, of size 20% of the width of the picture) we
could enter

Show�Graphics��PointSize�0.2�, Point��0, 0�����

� Graphics �

If you want the point to have a fixed absolute dimension, you use AbsolutePointSize
instead.

8. Graphics Programming 19

2001 10 30 © John Browne 2001

Show�Graphics��AbsolutePointSize�72�, Point��0, 0�����

� Graphics �

Absolute graphics dimensions are measured in screen pixels. A screen pixel of a medium
resolution computer screen is very roughly equal to a printer's point. There are 72 points in an
inch (or, very approximately, 3 per millimetre).

� Example

Suppose we had a plot generated by the Plot function, and we wanted to turn the points
generated by the Plot function into a series of points that you could change the size of.

pe � Plot�Exp��x� Cos�2�Π x�, �x, 0, 4��

1 2 3 4

-0.5

-0.25

0.25

0.5

0.75

1

� Graphics �

8. Graphics Programming 20

2001 10 30 © John Browne 2001

Show�pe��1, 1, 1, 1�� �.
�x_, y_� � �Graphics��PointSize�0.015�, Point��x, y������

� Graphics �

Exercise

� Exercise: Exploring point size directives

Take the plot from the example above and Show its points randomly coloured with absolute
size 3 mm.

�

Thickness

The Thickness graphics directive applies to lines. Just as for PointSize, there is also an
AbsoluteThickness.

You can apply Thickness or AbsoluteThickness to a Line object:

Show�Graphics��Thickness�0.1�,
Line���0, 1�, �1, 1�, �0, 0�, �1, 0�����, ImageSize � 100�

� Graphics �

Or, you can apply it directly to a Plot, using the PlotStyle option

8. Graphics Programming 21

2001 10 30 © John Browne 2001

ParametricPlot��Sin�t�, Sin�4�t��,
�t, 0, 2�Π�, PlotStyle � �Thickness�0.02�,

RGBColor�0.38999, 0.0117037, 0.0243839���

-1 -0.5 0.5 1

-1

-0.5

0.5

1

� Graphics �

Exercises

� Exercise: Modifying the thickness of a line

Make a Plot with a line thickness of 5 points.

� Exercise: Modifying the dashed form of a line

Explore the graphics directives Dashing and AbsoluteDashing. By researching their
syntax, and then using them in the PlotStyle option to a Plot.

�

8.7 Controlling Graphic Output

Graphic displays as side-effects

When writing a function to combine two or more plots, it is useful to be able to suppress the
automatic side-effect plotting of each one before the combination is made. Normally you can
suppress the display of output by using the semi-colon. For example, if we want to generate Π to
1000 places but not to display it we can enter

N�Π, 1000�;

8. Graphics Programming 22

2001 10 30 © John Browne 2001

However, if we try to generate a graphics object with a Plot command, and a semicolon, we
still get the plot displayed.

Plot���x2 , �x, �3, 3�	;

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1

The key to understanding this behaviour is to note that the display of the output was in fact
suppressed, but the plot is not the output, so it was not suppressed. Since the display of the plot
is a side-effect of the calculation, it was not suppressed by the semi-colon.

• We suppress a display of the plot by using the option

DisplayFunction � Identity

• We force a display of a plot by using the option

DisplayFunction � $DisplayFunction

� Example

As an example we generate 2 graphics objects using Plot, but suppress their display

p1 � Plot���x2 , �x, �3, 3�, DisplayFunction � Identity	
� Graphics �

p2 � Plot����x2 , �x, �3, 3�, DisplayFunction � Identity	
� Graphics �

Applying Show will combine them, but not show them, because we have explicitly included the
option DisplayFunction � Identity.

Show�p1, p2�
� Graphics �

In order to show the combined object we need to include the option DisplayFunction �
$DisplayFunction.

8. Graphics Programming 23

2001 10 30 © John Browne 2001

p3 � Show�p1, p2, DisplayFunction � $DisplayFunction�

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

� Graphics �

If we want to combine a circle with this we could use Show again

Show�p3, Graphics�Circle��0, 0�, 1���

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

� Graphics �

Exercise

� Exercise: Suppressing intermediate displays

Construct a plot which shows all the polynomial functions of the form xn , with n an integer
ranging from 1 to 8, over the range of x from -1 to 1. Construct it so that only the final plot, and
none of the intermediate plots are displayed.

�

8. Graphics Programming 24

2001 10 30 © John Browne 2001

8.8 Graphics Packages

Exploring graphics packages

There is a lot of graphics capability in the graphics packages that come with Mathematica, for
example the package "Graphics", or in the packages which you can find on MathSource, or
which are provided on disc with some of the Mathematica books.

For example Mathematica Graphics (by Tom Wickham-Jones) has a package for labeling
contour plots.

Load a Graphics package. Note carefully the use of the backquote `. (This is not a quote. It is
found on the same key as the tilde ~). For example Graphics`FilledPlot`

�� Graphics`FilledPlot`

To find out how to use the functions in this package, go to the Help Browser (Help...) under the
Help menu. Click Add-Ons, then Standard Packages > Graphics. Then choose from the list you
see in the third scroll box.

Note carefully that you must load the package before entering any functions in the package. If
by chance you don't, you can recover from the confusion by using Remove to remove the
offending function names you entered too soon. (A simpler way may be to quit Mathematica
and start a new session).

Exercises

� Exercise: Loading a graphics package

Load the Graphics package Graphics`FilledPlot`. Try out the FilledPlot function
for plotting a graph filled to the axis.

� Exercise: Exploring graphics packages

Look at the information on some of the functions described and try them out.

�

8. Graphics Programming 25

2001 10 30 © John Browne 2001

8.9 Graphics Arrays

Showing an array of graphics images

You can show an array of graphics images, that you have generated using the command
GraphicsArray. The syntax is

Show�GraphicsArray���plot1, plot2, …�, �plot3, plot4, …����
For example, suppose you were interested in displaying various polyhedra. You can access most
of them from the Graphics`Polyhedra` package. First load the package

�� Graphics`Polyhedra`

You can show them individually

p1 � Show�Graphics3D�Dodecahedron����

� Graphics3D �

Or in a GraphicsArray. First collect the polyhedra into the array configuration you want

poly � ��Graphics3D�Dodecahedron���, Graphics3D�
GreatDodecahedron���, Graphics3D�GreatIcosahedron����,

�Graphics3D�GreatStellatedDodecahedron���,
Graphics3D�Hexahedron���, Graphics3D�Icosahedron����,
�Graphics3D�Octahedron���,
Graphics3D�SmallStellatedDodecahedron���,
Graphics3D�Tetrahedron�����;

8. Graphics Programming 26

2001 10 30 © John Browne 2001

Show�GraphicsArray�poly��

� GraphicsArray �

Exercise

� Exercise: Exploring graphics arrays

Plot four separate graphs and combine them into 2�2 graphics array.

8.10 Animation

Generating an animation sequence

To animate a sequence of graphics, all you need to do is to generate them one after the other in
different cells. Then select the cells and choose Animate Selected Graphics from the Cell
menu.

For example, create a list of Graphics objects. Each one will be displayed in a cell as it is
created (provided you do not suppress them). You can collapse the bracket that contains all
these cells for neatness and just select the outer enclosing bracket to animate them via the menu
or keyboard shortcut.

8. Graphics Programming 27

2001 10 30 © John Browne 2001

Table�Plot3D�BesselJ�0,
���������������x2 	 y2 	 t	,
�x, �10, 10�, �y, �10, 10�, Axes � False,

PlotRange � ��0.5, 1.0�, PlotPoints � 25	, �t, 0, 8�	

�� SurfaceGraphics �, � SurfaceGraphics �, � SurfaceGraphics �,
� SurfaceGraphics �, � SurfaceGraphics �, � SurfaceGraphics �,
� SurfaceGraphics �, � SurfaceGraphics �, � SurfaceGraphics ��

Generating a spin sequence

There is another command which creates animation frames (a frame is simply a graphics object
in a cell), and which enables you to spin a graphic. First load the <<Graphics`Animation`
package.

�� Graphics`Animation`

Then generate a graphic.

8. Graphics Programming 28

2001 10 30 © John Browne 2001

gg �
Plot3D�Cos�x 	 Cos�y��, �x, �Π, Π�, �y, �Π, Π�, Axes � False�

� SurfaceGraphics �

Now generate some frames for this with SpinShow. You can then collapse the cells and
animate them as before.

SpinShow�gg, Frames � 12�

8. Graphics Programming 29

2001 10 30 © John Browne 2001

Exercises

� Exercise: Spinning a graphic

Load the package <<Graphics`Animation`. Generate a graphic and apply SpinShow to
it. Animate the resulting graphics sequence of cells.

� Exercise: Animating a graphic

Generate a list of graphics objects with the Table function. Animate the resulting sequence of
cells.

8.11 Problems

Problem 1: Modifying the points of a plot

Write a function called randomPlot[f,{x,a,b},e] which acts like the Plot function,
but adds a percentage error e to the points in the plot. (See the first exercise in the section.)

�

Problem 2: Further modification of the points of a plot

Design a function called circlePoints which takes a Plot and a diameter as arguments
and generates plot in which the plotted points are surrounded by circles of the given diameter.
(See the relevant exercises above).

�

Problem 3: Generating random graphics displays

Create the following graphic:

DensityPlot�Sin�x �Cos�y��,
�x, �Π, Π�, �y, �Π, Π�, ColorFunction � Hue,
PlotPoints � 40, Mesh � False, Frame � False�

Create a random array of four rectangles each filled with this graphic. Hint: Check out the
syntax for Rectangle.

8. Graphics Programming 30

2001 10 30 © John Browne 2001

Create a function called splatter[] which splatters 4 of these rectangles over the page. Use
a Module to combine your two previous results. Write your function so that the original
graphic is not displayed. Observe that some rectangles might obscure others.

�

Problem 4: Picking off graphics coordinates

Generate a ContourPlot of Sin[x y], with x and y ranging from -Π to Π. Use a
PlotPoints option of 50. And a Contours option of 4 (to generate 4 contours).

Go to the Input menu and select Get Graphics Coordinates. Pick off the points from the
innermost contour, and use ListPlot to plot them joined with a line.

�

Problem 5: Using color directives

A short piece of code producing a three dimensional graphic out of a table of Cuboid objects is

Show[Graphics3D[
 Table[{RGBColor[i,j,k],Cuboid[10{i,j,k}]},
 {i,0,1,0.2},{j,0,1,0.2},{k,0,1,0.2}]],
 Lighting->False,Boxed->False]

Show the graphic. Then modify the code to make the colours of the cuboids random.

Write a function called cubeStack which generates a stack of cubes of a different size
depending on the value of its single argument.

�

Problem 6: Viewing plots from different angles

Plot the following function

Plot3D�Sin�x� Cos�y�, �x, �2�Π, 2�Π�,
�y, �2�Π, 2�Π�, PlotPoints � 100,
PlotRange � ��1, 0.5�, Mesh � False, FaceGrids � All�

Use the 3D ViewPoint Selector in the Input menu find the values of a ViewPoint option
which will enable the viewing of the underneath of the surface.

Generate the plot viewed from underneath.

�

8. Graphics Programming 31

2001 10 30 © John Browne 2001

Problem 7: Generating graphics arrays

Create a Graphics array of the function �� a t

8 Cos�b t� with t from 0 to 6. The parameters a

ranges from 1 to 4 and b ranges from 1 to 3. Use the Table function to generate the plots of
which the array is composed, but suppress their individual display. To make the individual plots
more readable you may need to resize the font with the DefaultFont option, and force all of
the plot to be displayed with the PlotRange option. Expand the size of the overall
GraphicsArray with the ImageSize option.

�

Problem 8: A function which generates a graphics array

Write a function called plotArray which generates a graphics array as in the previous
problem, but which allows the maximum value of t which is plotted to be varied (that is, the
maximum value is the argument to the function).

Test out your function.

�

8. Graphics Programming 32

2001 10 30 © John Browne 2001

