Metronoom | Pendel

Selle juhendiga õpime leiutama endale metronoomi programmiga GeoGebra. Juhend jaguneb neljaks osaks - objektide ettevalmistus, parameetrid, parameetrite rakendamine ja välimus.

Esimeses osas sätestame vajaminevad objektid, et metronoomi luua:
 Käisen egit aätestame gugafikmugata

\rightarrow Kõigepealt sätestame graafikavaate	Eelistused - Graafikavaade
ruudustiku polaar ruudustiku tüübile:	Üldine xtela vtela Ruudustik
	Näita ruudustikku
	Ruudustiku tüüp
	Polaar
	Kaugus:
	r: 50
→ Loome järgmised 4 sirget sisendreale kirjutades:	
◆ x=0	
♦ y=6	
◆ y=0	
◆ y=400	
-	
\rightarrow Loodud 4 sirge lõikepunktid kanname graafikavaatele tööriistaga \square Lõika.	
Tulemusena saame punktid:	
\blacklozenge A(0.0)	
◆ B(0,6)	
• $C(0,400)$	
\rightarrow Peidame sirged	
→ Saadud punktidega tekitame lõigud tööriistaga	
◆ Lõik(B,C) [nimetame ümber "liug"]:	
• Joone stiiliks	
• Kanname objektile peale (punkti D) tööriistaga Punkt objektil	
• Sätestame punkti värviks tumeroheline, punkti suuruseks 7 ja stiil	
Punkti stiil	
+ ~	

◆ Lõik(A,D) [nimetame ümber "pikkus"]:

•

• Sätestame joone värviks tumeroheline ja joone suuruseks 7. NB! Selle lõigu pikkus saab olema määravaks, kui pidevalt meie metronoom pendeldab. → Loome ringjoone keskpunkti A ja punkti D abil, kasutades tööriista
 ☑ Ringjoon keskpunkti ja ringjoone punktiga

• *Kanname ringjoonele punkti E. (Peidame ringjoone edaspidiseks)*

→ Meil on vaja nurka ∠EAD [nimetame ümber θ_0], mis on reguleeritav liigutades

punkti E. Selleks saame kasutades tööriista 🕰 Nurk

♦ Sätetest muudame vahemiku
 NB! Selle suurusega saame seada metronoom-pendli võnkumise amplituudi.

- 2. Selles osas loome vajaminevad parameetrid:
- → Meil on tarvis metronoomile saada sekundi täpsusega võnkumine ning seda teeme järgmiselt kirjutades sisendreale selles järjekorras:
 - aeg = AnnaAeg()
 - milisek = aeg(1)
 - sekund = aeg(2)
- → Selleks, et hoida programmi reaalajas, peame looma liuguri ja kirjutama mõned käsud.
 - ◆ Kasutame tööriista Liugur , et luua liugur "värskenda":
 - *intervalliga min* = 0 *ja max* = 1*,*
 - kasvuga 0.001,
 - kiirusega 10.
 - Liuguri "värskenda" omaduste alt valime skriptimine ning uuendamisel nõuame täita järmised käsud:
 Uldine Liugur Värv Asukoht Algebra
 - 1 | MääraVäärtus[aeg, AnnaAeg()]
 - $2 \mid t = \text{sekund} + \text{milisek}/1000$

NB! Kui liuguri animatsioon töötab, siis esimene koodirida uuendab aega ning teine

 Üldine Liugur Värv Asukoht Algebra

 Lisavõimalused
 Skriptimine

 Uuendamisel
 Üldine JavaScript

 1
 1

koodirida loob meile milisekundi täpsusega sekundi loendamise. Väärtust [t] kasutame pendli võnkumise sujuvaks reaalaja animatsiooniks.

- → Viimasteks parameetriteks on jäänud veel pendli pikkus, gravitatsioonitegur, periood, sagedus ja bpm[löök(e) ühes minutis]. Selleks kirjutame sisendreale:
 - ♦ meetrid = pikkus*0.01
 - ◆ grav=9.80665
 - (Perioodi valemi) periood= 2π *sqrt(meetrid/grav)
 - ◆ sagedus=1/periood
 - bpm = sagedus*60*2

VAHEKONTROLL! Katseta, kas punkti D liigutades muutuvad loodud parameetrid. Kui punkti positiivsuse suunas liigutada, siis peab parameeter [bpm] kahanema ja negatiivsuse suuna puhul suurenema. 3. Selles osas juhendis loome metronoom-pendli "mehhanismi" sellise valemi abil :

$$heta_0 \cos\!\left(\sqrt{rac{g}{\ell}}\,t
ight)$$

kus θ_0 on meie parameeter $[\theta_0]$ nurgast $\angle EAD$, g on meie parameeter [grav], l on meie parameeter [meetrid] ning t on meie parameeter [t] ehk aeg.

→ Rakendame seda valemit tööriista tööriista ning vajutame järjekorras punktidele C ja A. Sisestame nurga suuruseks selle sama valemi meie loodud parameetritega nii [θ_0*cos(sqrt(grav / meetrid)*t]. See loob meile punkti C', mis on meie metronoom-pendli otspunktiks, kui ka suuruse α, mille võime edaspidiseks ära peita.

Kui "värskenda" liuguri animeerimine käivitada, siis näeme, et pendel toimib.

- 4. Viimases osas on jäänud veel teha illustreeriv aspekt tööst, mis on rangelt soovituslik, et töö oleks ka kasutajasõbralik. Minu soovitused on :
- → Peidame punkti C
- → Loome lõigu Lõik(A,C')
 - Lõigu värviks valime sobiva sinise värvi ning joone jämeduse valime 9
 - Samad sätted rakendame punkti C'puhul
- → Loome metronoomile raami
 - ♦ Kasutame tööriista ► Hulknurk , millega loome võrdhaarse trapetsi FGHI
- → Loome märkeruudu tööriistaga 🔽 Märkeruut
 - ◆ Pealdiseks määrame "töötab"
 - Skriptimise uuendamise koodi kirjutame
 1 | AlustaAnimeerimist(värskenda,a)
- → Peidame liuguri "värskenda"
- → Loome 2 nuppu START ja STOPP
 - ◆ *Start nupu skripti kirjutame* 1 | a= true
 - ◆ *Start nuppu näitame tingimusel* a=false
 - ◆ *Stopp nupu skripti kirjutame* 1 | a = false
 - *Stopp nuppu näitame tingimusel* a=true
 - Peidame märkeruudu "töötab"

Nüüd saame käivitada/peatada metronoomi nupust. Reguleerime pendeldamist punkti D nihutamise abil.

