Optimization Problems

EXAMPLE 1: A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?

Solution: Note that the area of the field depends on its dimensions:

Area $=700 \cdot 1000=700,000 \mathrm{ft}^{2}$

Area $=1000 \cdot 400=400,000 \mathrm{ft}^{2}$

To solve the problem, we first draw a picture that illustrates the general case:

The next step is to create a corresponding mathematical model:

$$
\begin{aligned}
& \text { Maximize: } A=x y \\
& \text { Constraint: } 2 x+y=2400
\end{aligned}
$$

We now solve the second equation for y and substitute the result into the first equation to express A as a function of one variable:

$$
2 x+y=2400 \quad \Longrightarrow \quad y=2400-2 x \quad \Longrightarrow \quad A=x y=x(2400-2 x)=2400 x-2 x^{2}
$$

To find the absolute maximum value of $A=2400 x-2 x^{2}$, we use
THE CLOSED INTERVAL METHOD: To find the absolute maximum and minimum values of a continuous function f on a closed interval [a, b]:

1. Find the values of f at the critical numbers of f in (a, b).
2. Find the values of f at the endpoints of the interval.
3. The largest of the values from Step 1 and 2 is the absolute maximum value; the smallest value of these values is the absolute minimum value.

We first note that $0 \leq x \leq 1200$. The derivative of $A(x)$ is $A^{\prime}(x)=\left(2400 x-2 x^{2}\right)^{\prime}=2400-4 x$, so to find the critical numbers we solve the equation

$$
2400-4 x=0 \quad \Longrightarrow \quad 2400=4 x \quad \Longrightarrow \quad x=\frac{2400}{4}=600
$$

To find the maximum value of $A(x)$ we evaluate it at the end points and critical number:

$$
A(0)=0, \quad A(600)=2400 \cdot 600-2 \cdot 600^{2}=720,000, \quad A(1200)=0
$$

The Closed Interval Method gives the maximum value as $A(600)=720,000 \mathrm{ft}^{2}$ and the dimensions are $x=600 \mathrm{ft}, y=2400-2 \cdot 600=1200 \mathrm{ft}$.

EXAMPLE 2: We need to enclose a field with a rectangular fence. We have 500 ft of fencing material and a building is on one side of the field and so won't need any fencing. Determine the dimensions of the field that will enclose the largest area.

EXAMPLE 2: We need to enclose a field with a rectangular fence. We have 500 ft of fencing material and a building is on one side of the field and so won't need any fencing. Determine the dimensions of the field that will enclose the largest area.

Solution: We first draw a picture that illustrates the general case:

The next step is to create a corresponding mathematical model:

$$
\begin{aligned}
& \text { Maximize: } A=x y \\
& \text { Constraint: } x+2 y=500
\end{aligned}
$$

We now solve the second equation for x and substitute the result into the first equation to express A as a function of one variable:

$$
x+2 y=500 \quad \Longrightarrow \quad x=500-2 y \quad \Longrightarrow \quad A=x y=(500-2 y) y=500 y-2 y^{2}
$$

To find the absolute maximum value of $A=500 y-2 y^{2}$, we use the Closed Interval Method. We first note that $0 \leq y \leq 250$. The derivative of $A(y)$ is

$$
A^{\prime}(y)=\left(500 y-2 y^{2}\right)^{\prime}=500 y^{\prime}-2\left(y^{2}\right)^{\prime}=500-4 y
$$

so to find the critical numbers we solve the equation

$$
500-4 y=0 \quad \Longrightarrow \quad 500=4 y \quad \Longrightarrow \quad y=\frac{500}{4}=125
$$

To find the maximum value of $A(y)$ we evaluate it at the end points and critical number:

$$
A(0)=0, \quad A(125)=500 \cdot 125-2 \cdot 125^{2}=31,250, \quad A(250)=0
$$

The Closed Interval Method gives the maximum value as $A(125)=31,250 \mathrm{ft}^{2}$ and the dimensions are $y=125 \mathrm{ft}, x=500-2 \cdot 125=250 \mathrm{ft}$.

EXAMPLE 3: We want to construct a box whose base length is 3 times the base width. The material used to build the top and bottom cost $\$ 10 / \mathrm{ft}^{2}$ and the material used to build the sides cost $\$ 6 / \mathrm{ft}^{2}$. If the box must have a volume of $50 \mathrm{ft}^{3}$ determine the dimensions that will minimize the cost to build the box.

EXAMPLE 3: We want to construct a box whose base length is 3 times the base width. The material used to build the top and bottom cost $\$ 10 / \mathrm{ft}^{2}$ and the material used to build the sides cost $\$ 6 / \mathrm{ft}^{2}$. If the box must have a volume of $50 \mathrm{ft}^{3}$ determine the dimensions that will minimize the cost to build the box.

Solution: We first draw a picture:

The next step is to create a corresponding mathematical model:
Minimize: $C=10(2 l w)+6(2 w h+2 l h)=10(2 \cdot 3 w \cdot w)+6(2 w h+2 \cdot 3 w \cdot h)=60 w^{2}+48 w h$
Constraint: $l w h=3 w^{2} h=50$
We now solve the second equation for h and substitute the result into the first equation to express C as a function of one variable:

$$
3 w^{2} h=50 \quad \Longrightarrow \quad h=\frac{50}{3 w^{2}} \quad \Longrightarrow \quad C=60 w^{2}+48 w h=60 w^{2}+48 w \cdot \frac{50}{3 w^{2}}=60 w^{2}+\frac{800}{w}
$$

Note that we can't use the Closed Interval Method because the domain of $C(w)$ is $(0, \infty)$ which is not a finite interval. Instead, we will use
FIRST DERIVATIVE TEST FOR ABSOLUTE EXTREME VALUES: Suppose that c is a critical number of a continuous function f defined on an interval.
(a) If $f^{\prime}(x)>0$ for all $x<c$ and $f^{\prime}(x)<0$ for all $x>c$, then $f(c)$ is the absolute maximum value of f.
(b) If $f^{\prime}(x)<0$ for all $x<c$ and $f^{\prime}(x)>0$ for all $x>c$, then $f(c)$ is the absolute minimum value of f.

The derivative of $C(w)$ is

$$
C^{\prime}(w)=\left(60 w^{2}+\frac{800}{w}\right)^{\prime}=120 w-\frac{800}{w^{2}}=\frac{120 w^{3}}{w^{2}}-\frac{800}{w^{2}}=\frac{120 w^{3}-800}{w^{2}}
$$

Since $w>0$, the only critical number is $w=\sqrt[3]{\frac{800}{120}}=\sqrt[3]{\frac{20}{3}} \approx 1.8821$. It is easy to see that $C^{\prime}(w)<0$ for all $0<w<\sqrt[3]{\frac{20}{3}}$ and $C^{\prime}(w)>0$ for all $w>\sqrt[3]{\frac{20}{3}}$. Therefore the minimum value of the cost must occur at $w=\sqrt[3]{\frac{20}{3}}$. The dimensions are

$$
w=\sqrt[3]{\frac{20}{3}} \approx 1.8821 \mathrm{ft}, \quad l=3 w=3 \sqrt[3]{\frac{20}{3}} \approx 5.6463 \mathrm{ft}, \quad h=\frac{50}{3 w^{2}} \approx 4.7050 \mathrm{ft}
$$

and the minimum cost is $C\left(\sqrt[3]{\frac{20}{3}}\right) \approx \$ 637.60$.
EXAMPLE 4: We want to construct a box with a square base and we only have $10 \mathrm{~m}^{2}$ of material to use in construction of the box. Assuming that all the material is used in the construction process determine the maximum volume that the box can have.

EXAMPLE 4: We want to construct a box with a square base and we only have $10 \mathrm{~m}^{2}$ of material to use in construction of the box. Assuming that all the material is used in the construction process determine the maximum volume that the box can have.
Solution: We first draw a picture:

The next step is to create a corresponding mathematical model:

$$
\begin{aligned}
& \text { Maximize: } V=l w h=w^{2} h \\
& \text { Constraint: } 2 l w+2 w h+2 l h=2 w^{2}+4 w h=10
\end{aligned}
$$

We now solve the second equation for h and substitute the result into the first equation to express V as a function of one variable:

$$
2 w^{2}+4 w h=10 \Longrightarrow h=\frac{10-2 w^{2}}{4 w}=\frac{5-w^{2}}{2 w} \Longrightarrow V=w^{2} h=w^{2}\left(\frac{5-w^{2}}{2 w}\right)=\frac{1}{2}\left(5 w-w^{3}\right)
$$

Since $w>0$, we can use only the First Derivative Test for Absolute Extreme Values. The derivative of $V(w)$ is

$$
V^{\prime}(w)=\left(\frac{1}{2}\left(5 w-w^{3}\right)\right)^{\prime}=\frac{1}{2}\left(5 w-w^{3}\right)^{\prime}=\frac{1}{2}\left(5-3 w^{2}\right)
$$

Since $w>0$, the only critical number is $w=\sqrt{\frac{5}{3}}$. It is easy to see that $V^{\prime}(w)>0$ for all $0<w<\sqrt{\frac{5}{3}}$ and $V^{\prime}(w)<0$ for all $w>\sqrt{\frac{5}{3}}$. Therefore the maximum value of the volume must occur at $w=\sqrt{\frac{5}{3}}$. Finally, the dimensions of the box are

$$
w=l=\sqrt{\frac{5}{3}} \approx 1.2910 \mathrm{~m}, \quad h=\frac{5-w^{2}}{2 w} \approx 1.2910 \mathrm{~m}
$$

which means the box with the maximum volume $V=\left(\sqrt{\frac{5}{3}}\right)^{3} \approx 2.1517 \mathrm{~m}^{3}$ is a cube.
EXAMPLE 5: A manufacturer needs to make a cylindrical can that will hold 1.5 liters of liquid. Determine the dimensions of the can that will minimize the amount of material used in its construction.

EXAMPLE 5: A manufacturer needs to make a cylindrical can that will hold 1.5 liters of liquid. Determine the dimensions of the can that will minimize the amount of material used in its construction.

Solution: We first draw a picture:

The next step is to create a corresponding mathematical model:

$$
\begin{aligned}
& \text { Minimize: } A=2 \pi r^{2}+2 \pi r h \\
& \text { Constraint: } \pi r^{2} h=1500
\end{aligned}
$$

We now solve the second equation for h and substitute the result into the first equation to express A as a function of one variable:
$\pi r^{2} h=1500 \quad \Longrightarrow \quad h=\frac{1500}{\pi r^{2}} \quad \Longrightarrow \quad A=2 \pi r^{2}+2 \pi r h=2 \pi r^{2}+2 \pi r \cdot \frac{1500}{\pi r^{2}}=2 \pi r^{2}+\frac{3000}{r}$
To find the absolute minimum value of $A=2 \pi r^{2}+\frac{3000}{r}$, we use the First Derivative Test for Absolute Extreme Values. The derivative of $A(r)$ is

$$
A^{\prime}(r)=\left(2 \pi r^{2}+\frac{3000}{r}\right)^{\prime}=4 \pi r-\frac{3000}{r^{2}}=\frac{4 \pi r^{3}}{r^{2}}-\frac{3000}{r^{2}}=\frac{4 \pi r^{3}-3000}{r^{2}}
$$

Since $r>0$, the only critical number is $r=\sqrt[3]{\frac{3000}{4 \pi}}=\sqrt[3]{\frac{750}{\pi}}$. It is easy to see that $A^{\prime}(r)<0$ for all $0<r<\sqrt[3]{\frac{750}{\pi}}$ and $A^{\prime}(r)>0$ for all $r>\sqrt[3]{\frac{750}{\pi}}$. Therefore the minimum value of the area must occur at $r=\sqrt[3]{\frac{750}{\pi}} \approx 6.2035 \mathrm{~cm}$ and this value is

$$
A\left(\sqrt[3]{\frac{750}{\pi}}\right) \approx 725.3964 \mathrm{~cm}^{2}
$$

Finally, the height of the can is

$$
h=\frac{1500}{\pi r^{2}}=\frac{1500}{\pi(750 / \pi)^{2 / 3}}=2 r \approx 12.4070 \mathrm{~cm}
$$

EXAMPLE 6: We have a piece of cardboard that is 14 in by 10 in and we're going to cut out the corners as shown below and fold up the sides to form a box, also shown below. Determine the height of the box that will give a maximum volume.

Solution: We create a corresponding mathematical model:

$$
\text { Maximize: } V=h(14-2 h)(10-2 h)=140 h-48 h^{2}+4 h^{3}
$$

It is easy to see that $0 \leq h \leq 5$. Therefore we can use either the Closed Interval Method or the First Derivative Test for Absolute Extreme Values to find the absolute maximum value of $V=140 h-48 h^{2}+4 h^{3}$.

Closed Interval Method: The derivative of $V(h)$ is

$$
V^{\prime}(h)=\left(140 h-48 h^{2}+4 h^{3}\right)^{\prime}=140-96 h+12 h^{2}
$$

so to find the critical numbers we solve the equation
$140-96 h+12 h^{2}=0 \Longrightarrow h=\frac{-(-96) \pm \sqrt{(-96)^{2}-4 \cdot 12 \cdot 140}}{2 \cdot 12}=\frac{12 \pm \sqrt{39}}{3} \approx 1.9183,6.0817$
Since $0 \leq h \leq 5$, the only critical number that we must consider is $h=\frac{12-\sqrt{39}}{3} \approx 1.9183$. To find the maximum value of $V(h)$ we evaluate it at the end points and critical number:

$$
V(0)=0, \quad V\left(\frac{12-\sqrt{39}}{3}\right) \approx 120.1644, \quad V(5)=0
$$

Therefore the maximum value of the volume must occur at $h=\frac{12-\sqrt{39}}{3} \approx 1.9183$ in and this value is $\approx 120.1644 \mathrm{in}^{3}$.

First Derivative Test for Absolute Extreme Values: By the above, $V^{\prime}(h)=140-96 h+12 h^{2}$ and the only critical number that we must consider is $h=\frac{12-\sqrt{39}}{3}$. It is easy to see that $V^{\prime}(h)>0$ for all $h<\frac{12-\sqrt{39}}{3}$ and $V^{\prime}(h)<0$ for all $h>\frac{12-\sqrt{39}}{3}$ from [0,5]. Therefore the maximum value of the volume must occur at $h=\frac{12-\sqrt{39}}{3} \approx 1.9183$ in and this value is $V\left(\frac{12-\sqrt{39}}{3}\right) \approx 120.1644 \mathrm{in}^{3}$.

EXAMPLE 7: A printer needs to make a poster that will have a total area of $200 \mathrm{in}^{2}$ and will have 1 in margins on the sides, a 2 in margin on the top and a 1.5 in margin on the bottom. What dimensions of the poster will give the largest printed area?

Solution: We first draw a picture. Then we create a corresponding mathematical model:

$$
\begin{aligned}
& \text { Maximize: } A=(w-2)(h-3.5) \\
& \text { Constraint: } w h=200
\end{aligned}
$$

We now solve the second equation for h and substitute the result into the first equation to express A as a function of one variable:

$$
w h=200 \Longrightarrow h=\frac{200}{w}
$$

so

$$
A=(w-2)(h-3.5)=(w-2)\left(\frac{200}{w}-3.5\right)=207-3.5 w-\frac{400}{w}
$$

It is easy to see that $2 \leq w \leq \frac{200}{3.5}$. Therefore we can use either the Closed Interval Method or the First Derivative Test for Absolute Extreme Values to find the absolute maximum value of $A=207-3.5 w-\frac{400}{w}$.
Closed Interval Method: The derivative of $A(w)$ is

$$
A^{\prime}(w)=\left(207-3.5 w-\frac{400}{w}\right)^{\prime}=-3.5+\frac{400}{w^{2}}=\frac{-3.5 w^{2}}{w^{2}}+\frac{400}{w^{2}}=\frac{-3.5 w^{2}+400}{w^{2}}
$$

Since $w \geq 2$, the only critical number is $w=\sqrt{\frac{400}{3.5}}$. To find the maximum value of $A(w)$ we evaluate it at the end points and critical number:

$$
A(2)=0, \quad A\left(\sqrt{\frac{400}{3.5}}\right) \approx 120.1644, \quad A\left(\frac{200}{3.5}\right)=0
$$

Therefore the maximum value of the area must occur at $w=\sqrt{\frac{400}{3.5}} \approx 10.6905$ in and this value is $\approx 132.1669 \mathrm{in}^{2}$. Finally, the height of the paper that gives the maximum printed area is

$$
h=\frac{200}{w}=\frac{200}{\sqrt{\frac{400}{3.5}}}=10 \sqrt{3.5} \approx 18.7083 \mathrm{in}
$$

First Derivative Test for Absolute Extreme Values: By the above, $A^{\prime}(w)=\frac{-3.5 w^{2}+400}{w^{2}}$ and the only critical number that we must consider is $w=\sqrt{\frac{400}{3.5}}$. It is easy to see that $A^{\prime}(w)>0$ for all $2 \leq w<\sqrt{\frac{400}{3.5}}$ and $A^{\prime}(w)<0$ for all $w>\sqrt{\frac{400}{3.5}}$. Therefore the maximum value of the area must occur at $w=\sqrt{\frac{400}{3.5}} \approx 10.6905 \mathrm{in}, h=10 \sqrt{3.5} \approx 18.7083 \mathrm{in}$ and this value is $\approx 132.1669 \mathrm{in}^{2}$.

EXAMPLE 8: A window is being built and the bottom is a rectangle and the top is a semicircle. If there is 12 m of framing materials what must the dimensions of the window be to let in the most light?
Solution: We first draw a picture. The next step is to create a corresponding mathematical model:

$$
\begin{aligned}
& \text { Maximize: } A=2 h r+\frac{1}{2} \pi r^{2} \\
& \text { Constraint: } 2 h+2 r+\pi r=12
\end{aligned}
$$

We now solve the second equation for h and substitute the result into the first equation to express A as a function of one variable:

$$
2 h+2 r+\pi r=12 \quad \Longrightarrow \quad h=6-r-\frac{1}{2} \pi r
$$

hence

$$
A=2 h r+\frac{1}{2} \pi r^{2}=2 r\left(6-r-\frac{1}{2} \pi r\right)+\frac{1}{2} \pi r^{2}=12 r-2 r^{2}-\frac{1}{2} \pi r^{2}=12 r-\left(2+\frac{1}{2} \pi\right) r^{2}
$$

It is easy to see that $0 \leq r \leq \frac{12}{2+\pi}$. Therefore we can use either the Closed Interval Method or the First Derivative Test for Absolute Extreme Values to find the absolute maximum value of $A=12 r-\left(2+\frac{1}{2} \pi\right) r^{2}$.
Closed Interval Method: The derivative of $A(r)$ is

$$
A^{\prime}(r)=\left(12 r-\left(2+\frac{1}{2} \pi\right) r^{2}\right)^{\prime}=12-\left(2+\frac{1}{2} \pi\right) \cdot 2 r=12-(4+\pi) r
$$

To find the critical numbers we solve the equation

$$
12-(4+\pi) r=0 \quad \Longrightarrow \quad 12=(4+\pi) r \quad \Longrightarrow \quad r=\frac{12}{4+\pi}
$$

To find the maximum value of $A(r)$ we evaluate it at the end points and critical number:

$$
A(0)=0, \quad A\left(\frac{12}{4+\pi}\right) \approx 10.0817, \quad A\left(\frac{12}{2+\pi}\right)=\frac{72 \pi}{(2+\pi)^{2}} \approx 8.5563
$$

Therefore the maximum value of the area must occur at $r=\frac{12}{4+\pi} \approx 1.6803 \mathrm{~m}$ and this value is $A\left(\frac{12}{4+\pi}\right) \approx 10.0817 \mathrm{~m}^{2}$. Finally, the height of the window that gives the maximum area is $h=2 r=\frac{24}{4+\pi} \approx 3.3606 \mathrm{~m}$.
First Derivative Test for Absolute Extreme Values: By the above, $A^{\prime}(r)=12-(4+\pi) r$ and the critical number is $r=\frac{12}{4+\pi}$. It is easy to see that $A^{\prime}(r)>0$ for all $r<\frac{12}{4+\pi}$ and $A^{\prime}(r)<0$ for all $r>\frac{12}{4+\pi}$. Therefore the maximum value of the area must occur at $r=\frac{12}{4+\pi} \approx 1.6803$ m and this value is $A\left(\frac{12}{4+\pi}\right) \approx 10.0817 \mathrm{~m}^{2}$; the height is $h=2 r=\frac{24}{4+\pi} \approx 3.3606 \mathrm{~m}$.

EXAMPLE 9: Determine the area of the largest rectangle that can be inscribed in a circle of radius 4.

EXAMPLE 9: Determine the area of the largest rectangle that can be inscribed in a circle of radius 4.

Solution: We first draw a picture:

The next step is to create a corresponding mathematical model:

$$
\begin{aligned}
& \text { Maximize: } A=2 x \cdot 2 y=4 x y \\
& \text { Constraint: } x^{2}+y^{2}=16
\end{aligned}
$$

We can solve the second equation for x and substitute the result into the first equation to express A as a function of one variable. However, this approach involves roots which makes the algebra a bit complicated.

Instead, we square both sides of $A=4 x y$. Note that x and y are both nonnegative. Therefore values that maximize $A=4 x y$ will also maximize $A^{2}=16 x^{2} y^{2}$ and vice-verse. Putting $B=$ $A^{2}, u=x^{2}, v=y^{2}$, we reformulate our problem in the following way:

$$
\begin{aligned}
& \text { Maximize: } B=16 u v \\
& \text { Constraint: } u+v=16
\end{aligned}
$$

We now solve the second equation for u and substitute the result into the first equation to express B as a function of one variable:

$$
u+v=16 \quad \Longrightarrow \quad u=16-v \quad \Longrightarrow \quad B=16 u v=16(16-v) v=256 v-16 v^{2}
$$

To find the absolute maximum value of $B=256 v-16 v^{2}$, we can use either the Closed Interval Method or the First Derivative Test for Absolute Extreme Values. Here we use the First Derivative Test for Absolute Extreme Values. The derivative of $B(v)$ is $B^{\prime}(v)=256-32 v$, so to find the critical numbers we solve the equation

$$
256-32 v=0 \quad \Longrightarrow \quad 256=32 v \quad \Longrightarrow \quad v=\frac{256}{32}=8
$$

It is easy to see that $B^{\prime}(v)>0$ for all $v<8$ and $B^{\prime}(v)<0$ for all $v>8$. Therefore the maximum value of the area must occur at $v=8$ and this area is $A=\sqrt{B}=\sqrt{256 \cdot 8-16 \cdot 8^{2}}=32$. The dimensions of the rectangle are $y=\sqrt{8}=2 \sqrt{2}$ and $x=\sqrt{u}=\sqrt{16-v}=\sqrt{16-8}=\sqrt{8}=$ $2 \sqrt{2}$. So, this rectangle is a square.

EXAMPLE 10: Determine the points on $y=x^{2}+1$ that are closest to $(0,2)$.

EXAMPLE 10: Determine the points on $y=x^{2}+1$ that are closest to $(0,2)$.
Solution: We first draw a picture:

The next step is to create a corresponding mathematical model:

$$
\begin{aligned}
& \text { Minimize: } d=\sqrt{(x-0)^{2}+(y-2)^{2}}=\sqrt{x^{2}+(y-2)^{2}} \\
& \text { Constraint: } y=x^{2}+1
\end{aligned}
$$

We can now substitute $y=x^{2}+1$ into the first equation to express d as a function of one variable. However, this approach involves roots which makes the algebra a bit complicated.

Instead, we square both sides of $d=\sqrt{x^{2}+(y-2)^{2}}$. Note that values of x and y that minimize $d=\sqrt{x^{2}+(y-2)^{2}}$ will also minimize $d^{2}=x^{2}+(y-2)^{2}$ and vice-verse. Putting $D=d^{2}$, we can reformulate our problem in the following way:

$$
\begin{aligned}
& \text { Minimize: } D=x^{2}+(y-2)^{2} \\
& \text { Constraint: } y=x^{2}+1
\end{aligned}
$$

We now solve the second equation for x^{2} and substitute the result into the first equation to express D as a function of one variable:

$$
y=x^{2}+1 \quad \Longrightarrow \quad x^{2}=y-1 \quad \Longrightarrow \quad D=x^{2}+(y-2)^{2}=y-1+(y-2)^{2}=y^{2}-3 y+3
$$

Since there is no upper bound for y, we can use only the First Derivative Test for Absolute Extreme Values to find the absolute minimum value of $D=y^{2}-3 y+3$. The derivative of $D(y)$ is $D^{\prime}(y)=2 y-3$, so to find the critical numbers we solve the equation

$$
2 y-3=0 \quad \Longrightarrow \quad y=\frac{3}{2}
$$

It is easy to see that $D^{\prime}(y)<0$ for all $y<\frac{3}{2}$ and $D^{\prime}(y)>0$ for all $y>\frac{3}{2}$. Therefore the minimum value of the distance must occur at $y=\frac{3}{2}$ and this distance is

$$
d=\sqrt{D}=\sqrt{\left(\frac{3}{2}\right)^{2}-3 \cdot \frac{3}{2}+3}=\frac{\sqrt{3}}{2}
$$

The corresponding x-coordinates are

$$
x^{2}=y-1 \quad \Longrightarrow \quad x= \pm \sqrt{y-1}= \pm \sqrt{\frac{3}{2}-1}= \pm \frac{1}{\sqrt{2}}
$$

Thus, the points are $\left(-\frac{1}{\sqrt{2}}, \frac{3}{2}\right)$ and $\left(\frac{1}{\sqrt{2}}, \frac{3}{2}\right)$.

EXAMPLE 11: A man launches his boat from point A on a bank of a straight river, 3 km wide, and wants to reach point $B, 8 \mathrm{~km}$ downstream on the opposite bank, as quickly as possible. He could proceed in any of three ways:

1. Row his boat directly across the river to point C and then run to B
2. Row directly to B
3. Row to some point D between C and B and then run to B

If he can row $6 \mathrm{~km} / \mathrm{h}$ and run $8 \mathrm{~km} / \mathrm{h}$, where should he land to reach B as soon as possible?

Solution: If we let x be the distance from C to D, then the running distance is $|D B|=8-x$ and the Pythagorean Theorem gives the rowing distance as $|A D|=\sqrt{x^{2}+9}$. We use the equation

$$
\text { time }=\frac{\text { distance }}{\text { rate }}
$$

Then the rowing time is $\sqrt{x^{2}+9} / 6$ and the running time is $(8-x) / 8$, so the total time T as a function of x is

$$
T(x)=\frac{\sqrt{x^{2}+9}}{6}+\frac{8-x}{8}
$$

The domain of this function T is $[0,8]$. Notice that if $x=0$ he rows to C and if $x=8$ he rows directly to B. The derivative of T is

$$
\begin{aligned}
T^{\prime}(x)=\left(\frac{\left(x^{2}+9\right)^{1 / 2}}{6}+\frac{8-x}{8}\right)^{\prime} & =\frac{1}{6}\left(\left(x^{2}+9\right)^{1 / 2}\right)^{\prime}+\frac{1}{8}(8-x)^{\prime} \\
& =\frac{1}{6} \cdot \frac{1}{2}\left(x^{2}+9\right)^{1 / 2-1} \cdot\left(x^{2}+9\right)^{\prime}+\frac{1}{8}(8-x)^{\prime} \\
& =\frac{1}{6} \cdot \frac{1}{2}\left(x^{2}+9\right)^{-1 / 2} \cdot 2 x+\frac{1}{8} \cdot(-1) \\
& =\frac{x}{6 \sqrt{x^{2}+9}}-\frac{1}{8}
\end{aligned}
$$

Thus, using the fact that $x \geq 0$, we have

$$
T^{\prime}(x)=0 \Leftrightarrow \frac{x}{6 \sqrt{x^{2}+9}}=\frac{1}{8} \Leftrightarrow 4 x=3 \sqrt{x^{2}+9} \Leftrightarrow 16 x^{2}=9\left(x^{2}+9\right) \Leftrightarrow 7 x^{2}=81
$$

so the only critical point is $9 / \sqrt{7}$. To see whether the minimum occurs at this critical number or at an endpoint of the domain $[0,8]$, we evaluate T at all three points:

$$
T(0)=1.5 \quad T\left(\frac{9}{\sqrt{7}}\right)=1+\frac{\sqrt{7}}{8} \approx 1.33 \quad T(8)=\frac{\sqrt{73}}{6} \approx 1.42
$$

Since the smallest of these values of T occurs when $x=9 / \sqrt{7}$, the absolute minimum value of T must occur there. Thus the man should land the boat at a point $9 / \sqrt{7} \mathrm{~km}(\approx 3.4 \mathrm{~km})$ downstream from his starting point.

Applications to Business and Economics

DEFINITION: The cost function $C(x)$ is the cost of producing x units of a certain product. The marginal cost $C^{\prime}(x)$ is the rate of change of C with respect to x. The demand function (or price function) $p(x)$ is the price per unit that the company can charge if it sells x units. If x units are sold and the price per unit is $p(x)$, then the total revenue is

$$
R(x)=x p(x)
$$

and R is called the revenue function. The derivative R^{\prime} of the revenue function is called the marginal revenue function and is the rate of change of revenue with the respect to the number of units sold. If x units are sold, then the total profit is

$$
P(x)=R(x)-C(x)
$$

and P is called the profit function. The marginal profit function is P^{\prime}, the derivative of the profit function.

EXAMPLE: A store has been selling 200 DVD burners a week at $\$ 350$ each. A market survey indicates that for each $\$ 10$ rebate offered to buyers, the number of units sold will increase by 20 a week. Find the demand function and the revenue function. How large a rebate should the store offer to maximize its revenue?

Solution: If x is the number of DVD burners sold per week, then the weekly increase in sales is $x-200$. For each increase of 20 units sold, the price is decreased by $\$ 10$. So for each additional unit sold, the decrease in price will be $\frac{1}{20} \times 10$ and the demand function is

$$
p(x)=350-\frac{10}{20}(x-200)=450-\frac{1}{2} x
$$

The revenue function is

$$
R(x)=x p(x)=450 x-\frac{1}{2} x^{2}
$$

Since $R^{\prime}(x)=450-x$, we see that $R^{\prime}(x)=0$ when $x=450$. This value of x gives an absolute maximum by the First Derivative Test (or simply by observing that the graph of R is a parabola that opens downward). The corresponding price is

$$
p(450)=450-\frac{1}{2} \cdot 450=225
$$

and the rebate is $350-225=125$. Therefore, to maximize revenue the store should offer a rebate of $\$ 125$.

