(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 10.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 278713, 5388] NotebookOptionsPosition[ 270782, 5070] NotebookOutlinePosition[ 271292, 5089] CellTagsIndexPosition[ 271249, 5086] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Operatsioonianal\[UDoubleDot]\[UDoubleDot]s ja lineaarne planeerimine \ ", "Section", CellChangeTimes->{{3.632937092873903*^9, 3.6329371297523675`*^9}, { 3.633350050279088*^9, 3.6333500697791224`*^9}, {3.6333524097052317`*^9, 3.633352425024459*^9}}], Cell[CellGroupData[{ Cell[TextData[{ "Enamasti on n\[ADoubleDot]iteks koolimatemaatika \[UDoubleDot]lesandel ", StyleBox["\[UDoubleDot]ksainus", FontSlant->"Italic"], " lahend. Vahel on lahendeid kaks (ruutv\[OTilde]rrandil \ n\[ADoubleDot]iteks); harva on \[UDoubleDot]lesandel lahendeid rohkem. M\ \[OTilde]nel \[UDoubleDot]lesandel on aga", StyleBox[" palju erinevad lahendeid", FontSlant->"Italic"], ", m\[OTilde]nel koguni ", StyleBox["l\[OTilde]pmata palju erinevaid lahendeid", FontSlant->"Italic"], "." }], "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, 3.633371407222601*^9}], Cell[CellGroupData[{ Cell["Mida siis teha?.", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.6333519647144504`*^9, 3.633351977397273*^9}}], Cell[CellGroupData[{ Cell["\<\ K\[OTilde]igi lahendite hulgas leidub tavaliselt \[UDoubleDot]ks v\[OTilde]i \ mitu sellist lahendit, mis mingit t\[ADoubleDot]iendavalt \ p\[UDoubleDot]stitatud lisatingimust (n\[ADoubleDot]iteks odavust) paremini \ rahuldab.\ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.6333520159449406`*^9, 3.6333521328671455`*^9}}], Cell[CellGroupData[{ Cell[TextData[{ "Sellist lahendit nimetatakse ", StyleBox["optimaalseks lahendiks", FontWeight->"Bold", FontSlant->"Italic"], "." }], "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.6333520159449406`*^9, 3.6333521768124228`*^9}, {3.633352210087281*^9, 3.6333522185112963`*^9}}], Cell[CellGroupData[{ Cell["\<\ Optimaalseid lahendeid otsitakse paljudes situatsioonides. \ N\[ADoubleDot]iteks:\ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.6333520159449406`*^9, 3.6333521768124228`*^9}, {3.633352210087281*^9, 3.6333522185112963`*^9}, 3.6333522775573997`*^9, {3.6333523386939073`*^9, 3.6333523837155867`*^9}, 3.633352463696927*^9}], Cell[CellGroupData[{ Cell["\<\ 1. Kuidas korraldada tehases tootmist nii, et kasum oleks suurim?\ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.6333520159449406`*^9, 3.6333521768124228`*^9}, {3.633352210087281*^9, 3.6333522185112963`*^9}, 3.6333522775573997`*^9, {3.6333523386939073`*^9, 3.6333523837155867`*^9}, {3.633352463696927*^9, 3.633352480810157*^9}}], Cell[CellGroupData[{ Cell["\<\ N\[ADoubleDot]iteks: \[UDoubleDot]htede ja samade algkomponentide baasil on \ keemiakombinaat v\[OTilde]imeline tootma mitmeid erinevaid aineid. On teada \ algkomponentide hinnad ja erinevate l\[OTilde]pp-produktide hinnad. Kulutused \ t\[ODoubleDot]\[ODoubleDot]j\[OTilde]ule on samuti teada. Mida on kasulikum \ toota?\ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.6333520159449406`*^9, 3.6333521768124228`*^9}, {3.633352210087281*^9, 3.6333522185112963`*^9}, 3.6333522775573997`*^9, {3.6333523386939073`*^9, 3.6333523837155867`*^9}, {3.633352463696927*^9, 3.63335248837617*^9}}], Cell[CellGroupData[{ Cell["\<\ 2. Kuidas peab juurdel\[OTilde]ikaja m\[ADoubleDot]rkima kangale \ l\[OTilde]iked, et j\[ADoubleDot]\[ADoubleDot]gid oleksid v\[ADoubleDot]himad?\ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.6333520159449406`*^9, 3.6333521768124228`*^9}, {3.633352210087281*^9, 3.6333522185112963`*^9}, 3.6333522775573997`*^9, {3.6333523386939073`*^9, 3.6333523837155867`*^9}, {3.633352463696927*^9, 3.633352500138591*^9}}], Cell[CellGroupData[{ Cell["\<\ 3. Kuidas koostada n\[ADoubleDot]dala men\[UDoubleDot]\[UDoubleDot]d nii, et \ toit oleks tervislik ja odav?\ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.6333520159449406`*^9, 3.6333521768124228`*^9}, {3.633352210087281*^9, 3.6333522185112963`*^9}, 3.6333522775573997`*^9, {3.6333523386939073`*^9, 3.6333523837155867`*^9}, {3.633352463696927*^9, 3.633352506612602*^9}}], Cell[CellGroupData[{ Cell["4. Kuidas koostada koolis tunniplaani?", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.6333520159449406`*^9, 3.6333521768124228`*^9}, {3.633352210087281*^9, 3.6333522185112963`*^9}, 3.6333522775573997`*^9, {3.6333523386939073`*^9, 3.6333523837155867`*^9}, {3.633352463696927*^9, 3.6333525102630086`*^9}}], Cell[CellGroupData[{ Cell["5. Kuidas katta mingi maakoht bussiliinidega?", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.6333520159449406`*^9, 3.6333521768124228`*^9}, {3.633352210087281*^9, 3.6333522185112963`*^9}, 3.6333522775573997`*^9, {3.6333523386939073`*^9, 3.6333523837155867`*^9}, {3.633352463696927*^9, 3.633352514038215*^9}}], Cell[CellGroupData[{ Cell["\<\ 6. Kuidas valida erinevate automarkide vahel ostjale k\[OTilde]ige sobivamat?\ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.6333520159449406`*^9, 3.6333521768124228`*^9}, {3.633352210087281*^9, 3.6333522185112963`*^9}, 3.6333522775573997`*^9, {3.6333523386939073`*^9, 3.6333523837155867`*^9}, {3.633352463696927*^9, 3.6333525183594227`*^9}}], Cell[CellGroupData[{ Cell["\<\ 7. Orienteeruja peab l\[ADoubleDot]bima metsas olevad kontrollpunktid, mille \ asukohad ja omavahelised kaugused on teada. Kontrollpunktide \ l\[ADoubleDot]bimise j\[ADoubleDot]rjekord ei ole t\[ADoubleDot]htis. Millise \ marsruudi peab valima orienteeruja, et l\[ADoubleDot]bitava trassi pikkus \ oleks minimaalne?\ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.6333520159449406`*^9, 3.6333521768124228`*^9}, {3.633352210087281*^9, 3.6333522185112963`*^9}, 3.6333522775573997`*^9, {3.6333523386939073`*^9, 3.6333523837155867`*^9}, {3.633352463696927*^9, 3.6333525183594227`*^9}, { 3.633352565767906*^9, 3.6333525690751123`*^9}}], Cell[CellGroupData[{ Cell[TextData[{ "K\[OTilde]ik need on k\[UDoubleDot]simused, kus tuleb valida paljude \ erinevate v\[OTilde]imaluste hulgast optimaalne, s.o. k\[OTilde]ige parem, k\ \[OTilde]ige \[ODoubleDot]konoomsem lahend. ", StyleBox["Teadust, mis tegeleb optimaalsete lahendite otsimisega ja kasutab \ selleks matemaatilisi meetodeid nimetatakse ", FontSlant->"Italic"], StyleBox["operatsioonianal\[UDoubleDot]\[UDoubleDot]siks", FontWeight->"Bold", FontSlant->"Italic"], ". " }], "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.6333520159449406`*^9, 3.6333521768124228`*^9}, {3.633352210087281*^9, 3.6333522185112963`*^9}, 3.6333522775573997`*^9, {3.6333523386939073`*^9, 3.6333523837155867`*^9}, {3.633352463696927*^9, 3.6333525183594227`*^9}, { 3.633352565767906*^9, 3.6333525690751123`*^9}, 3.633352671099291*^9, { 3.633352810017535*^9, 3.6333528296735697`*^9}}], Cell[CellGroupData[{ Cell["\<\ Operatsioonianal\[UDoubleDot]\[UDoubleDot]s tekkis Teise maailmas\[OTilde]ja \ p\[ADoubleDot]evil s\[OTilde]jalistel vajadustel. P\[ADoubleDot]rast s\ \[OTilde]ja l\[OTilde]ppu hakati operatsioonianal\[UDoubleDot]\[UDoubleDot]si \ meetodeid rakendama majanduses, transpordis, tootmise juhtimises, kaubanduses \ ja mitmel pool mujal. \ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.6333520159449406`*^9, 3.6333521768124228`*^9}, {3.633352210087281*^9, 3.6333522185112963`*^9}, 3.6333522775573997`*^9, {3.6333523386939073`*^9, 3.6333523837155867`*^9}, {3.633352463696927*^9, 3.6333525183594227`*^9}, { 3.633352565767906*^9, 3.6333525690751123`*^9}, 3.633352671099291*^9, { 3.633352810017535*^9, 3.6333528468336*^9}}], Cell[CellGroupData[{ Cell[TextData[{ "Operatsioonianal\[UDoubleDot]\[UDoubleDot]si abil t\[ODoubleDot]\ \[ODoubleDot]tatakse v\[ADoubleDot]lja ", StyleBox["parimate lahenduste leidmise viisid", FontSlant->"Italic"], ", operatsioonianal\[UDoubleDot]\[UDoubleDot]s ", StyleBox["aitab otsustada", FontSlant->"Italic"], "." }], "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.6333520159449406`*^9, 3.6333521768124228`*^9}, {3.633352210087281*^9, 3.6333522185112963`*^9}, 3.6333522775573997`*^9, {3.6333523386939073`*^9, 3.6333523837155867`*^9}, {3.633352463696927*^9, 3.6333525183594227`*^9}, { 3.633352565767906*^9, 3.6333525690751123`*^9}, 3.633352671099291*^9, { 3.633352810017535*^9, 3.6333528468336*^9}}], Cell[TextData[{ "Operatsioonianal\[UDoubleDot]\[UDoubleDot]si alla kuulub ka ", StyleBox["matemaatiline planeerimine", FontSlant->"Italic"], ", mille \[UDoubleDot]heks lihtsamaks osaks on ", StyleBox["lineaarne planeerimine", FontWeight->"Bold"], ".\n" }], "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.6333520159449406`*^9, 3.6333521768124228`*^9}, {3.633352210087281*^9, 3.6333522185112963`*^9}, 3.6333522775573997`*^9, {3.6333523386939073`*^9, 3.6333523837155867`*^9}, {3.633352463696927*^9, 3.6333525183594227`*^9}, { 3.633352565767906*^9, 3.6333525690751123`*^9}, 3.633352671099291*^9, { 3.633352810017535*^9, 3.6333528163667464`*^9}}] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[StyleBox["Lineaarse planeerimise sissejuhatav n\[ADoubleDot]ide", FontSize->32]], "Subsection", CellChangeTimes->{{3.632940434746666*^9, 3.632940445994285*^9}, { 3.632940478177142*^9, 3.6329404956803727`*^9}, {3.633353895043041*^9, 3.6333539102218676`*^9}}], Cell[CellGroupData[{ Cell[TextData[{ "V\[ADoubleDot]ike tislerit\[ODoubleDot]\[ODoubleDot]koda \ \[OpenCurlyDoubleQuote]Aken ja Uks\[CloseCurlyDoubleQuote] toodab puidust \ aknaid ja uksi. Akna valmistamiseks kulub 4 m neljandilist h\[ODoubleDot]\ \[ODoubleDot]velpuitu, 1,2 ", Cell[BoxData[ FormBox[ SuperscriptBox["m", "2"], TraditionalForm]]], " klaasi ja 6 tundi tisleri t\[ODoubleDot]\[ODoubleDot]aega. Ukse \ valmistamiseks kulub 20 m neljakandilist h\[ODoubleDot]\[ODoubleDot]velpuitu \ ja 10 tundi tisleri t\[ODoubleDot]\[ODoubleDot]aega. T\[ODoubleDot]\ \[ODoubleDot]kojas on \[UDoubleDot]he kuu varu \ h\[ODoubleDot]\[ODoubleDot]velpuitu - 1400 m ja \[UDoubleDot]he kuu varu \ klaasi - 90 ", Cell[BoxData[ FormBox[ SuperscriptBox["m", "2"], TraditionalForm]]], ". Selles kuus v\[OTilde]ib arvestada 900 tislerit\[ODoubleDot]\[ODoubleDot] \ tunniga. Peale t\[ODoubleDot]\[ODoubleDot]meestele palga ja riigile maksude \ \[ADoubleDot]ramaksmist teenib t\[ODoubleDot]\[ODoubleDot]koja omanik iga \ akna pealt 10 \[Euro] kasumit, iga ukse pealt aga 30\[Euro] kasumit. Kui \ palju aknaid ja uksi tuleks valmistada, et t\[ODoubleDot]\[ODoubleDot]koja \ omaniku kasum oleks maksimaalne?" }], "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9}], Cell[CellGroupData[{ Cell[TextData[{ "Olgu toodetavate akende arv ", StyleBox["x", FontSlant->"Italic"], " ja ja uste arv ", StyleBox["y. ", FontSlant->"Italic"], "Koondame \[UDoubleDot]lesande andmed tabelisse." }], "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, { 3.633365190755666*^9, 3.633365248553767*^9}}], Cell[CellGroupData[{ Cell[BoxData[GridBox[{ { StyleBox["Tooted", FontFamily->"Arial"], StyleBox[ RowBox[{"Valmistada", " ", RowBox[{"(", RowBox[{"tk", "."}], ")"}]}], FontFamily->"Arial"], StyleBox[ RowBox[{"H\[ODoubleDot]\[ODoubleDot]velpuidu", " ", "kulu", RowBox[{"(", "m", ")"}]}], FontFamily->"Arial"], StyleBox[ RowBox[{"Klaasi", " ", "kulu", RowBox[{"(", FormBox[ SuperscriptBox["m", "2"], TraditionalForm], ")"}]}], FontFamily->"Arial"], StyleBox[ RowBox[{"T\[ODoubleDot]\[ODoubleDot]aeg", RowBox[{"(", "h", ")"}]}], FontFamily->"Arial"], StyleBox[ RowBox[{"Kasum", " ", RowBox[{"(", "\[Euro]", ")"}]}], FontFamily->"Arial"]}, { StyleBox["Aken", FontFamily->"Arial"], StyleBox["x", FontFamily->"Arial"], StyleBox["4", FontFamily->"Arial"], StyleBox[ RowBox[{"1", ",", "2"}], FontFamily->"Arial"], StyleBox["6", FontFamily->"Arial"], StyleBox["10", FontFamily->"Arial"]}, { StyleBox["Uks", FontFamily->"Arial"], StyleBox["y", FontFamily->"Arial"], StyleBox["20", FontFamily->"Arial"], StyleBox["-", FontFamily->"Arial"], StyleBox["10", FontFamily->"Arial"], StyleBox["30", FontFamily->"Arial"]}, { StyleBox["Varud", FontFamily->"Arial"], StyleBox[" ", FontFamily->"Arial"], StyleBox["1400", FontFamily->"Arial"], StyleBox["90", FontFamily->"Arial"], StyleBox["900", FontFamily->"Arial"], StyleBox[" ", FontFamily->"Arial"]} }, GridBoxDividers->{ "Columns" -> {{True}}, "ColumnsIndexed" -> {}, "Rows" -> {{True}}, "RowsIndexed" -> {}}]], "Text", CellChangeTimes->{{3.633365472881363*^9, 3.633365591784772*^9}, { 3.6333656224232254`*^9, 3.6333657757246947`*^9}, 3.633365853896432*^9, { 3.633366004458297*^9, 3.6333660076251025`*^9}}], Cell[CellGroupData[{ Cell["\<\ Tootmist piiravad varud. Esitame need kitsendused matemaatiliselt. Kui toota \ x akent ja y ust, siis kulub h\[ODoubleDot]\[ODoubleDot]velpuitu 4 x + 20 y. \ See kulu ei saa olla suurem varudest, seega\ \>", "Text", CellChangeTimes->{{3.633365949125*^9, 3.6333660663904057`*^9}, { 3.6333661408493366`*^9, 3.633366146137746*^9}, {3.6333663536805105`*^9, 3.6333663640857286`*^9}, {3.633366406502203*^9, 3.6333664102150097`*^9}, { 3.6333664430842676`*^9, 3.6333664549558887`*^9}}], Cell[CellGroupData[{ Cell["4 x + 20 y \[LessSlantEqual] 1400.", "Text", CellChangeTimes->{{3.633365949125*^9, 3.6333660663904057`*^9}, { 3.6333661408493366`*^9, 3.633366146137746*^9}, {3.6333663536805105`*^9, 3.6333663640857286`*^9}, {3.633366406502203*^9, 3.6333664102150097`*^9}, { 3.6333664430842676`*^9, 3.633366479291931*^9}}], Cell[CellGroupData[{ Cell["Ka klaasi ei saa kulutada rohkem, kui seda on, seega", "Text", CellChangeTimes->{{3.633365949125*^9, 3.6333660663904057`*^9}, { 3.6333661408493366`*^9, 3.633366146137746*^9}, {3.6333663536805105`*^9, 3.6333663640857286`*^9}, {3.633366406502203*^9, 3.6333664102150097`*^9}, { 3.6333664430842676`*^9, 3.633366479291931*^9}, {3.6333665376672335`*^9, 3.63336659855414*^9}}], Cell[CellGroupData[{ Cell["1.2 x \[LessSlantEqual] 90.", "Text", CellChangeTimes->{{3.633365949125*^9, 3.6333660663904057`*^9}, { 3.6333661408493366`*^9, 3.633366146137746*^9}, {3.6333663536805105`*^9, 3.6333663640857286`*^9}, {3.633366406502203*^9, 3.6333664102150097`*^9}, { 3.6333664430842676`*^9, 3.633366479291931*^9}, {3.6333665376672335`*^9, 3.63336659855414*^9}, 3.633366628568593*^9}], Cell[CellGroupData[{ Cell["\<\ Toota ei saa rohkem, kui tislerid j\[OTilde]uavad antud aja piires t\ \[ODoubleDot]\[ODoubleDot]d teha, seega\ \>", "Text", CellChangeTimes->{{3.633365949125*^9, 3.6333660663904057`*^9}, { 3.6333661408493366`*^9, 3.633366146137746*^9}, {3.6333663536805105`*^9, 3.6333663640857286`*^9}, {3.633366406502203*^9, 3.6333664102150097`*^9}, { 3.6333664430842676`*^9, 3.633366479291931*^9}, {3.6333665376672335`*^9, 3.63336659855414*^9}, {3.633366628568593*^9, 3.633366674900675*^9}}], Cell[CellGroupData[{ Cell["6 x + 10 y \[LessSlantEqual] 900.", "Text", CellChangeTimes->{{3.633365949125*^9, 3.6333660663904057`*^9}, { 3.6333661408493366`*^9, 3.633366146137746*^9}, {3.6333663536805105`*^9, 3.6333663640857286`*^9}, {3.633366406502203*^9, 3.6333664102150097`*^9}, { 3.6333664430842676`*^9, 3.633366479291931*^9}, {3.6333665376672335`*^9, 3.63336659855414*^9}, {3.633366628568593*^9, 3.6333666942603083`*^9}, 3.6333667259751644`*^9}], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["E", FontFamily->"Arial Narrow"], "t need kitsendused kehtivad \[UDoubleDot]heaegselt, siis v\[OTilde]ime \ vaadelda neid v\[OTilde]rratuste s\[UDoubleDot]steemina" }], "Text", CellChangeTimes->{{3.633365949125*^9, 3.6333660663904057`*^9}, { 3.6333661408493366`*^9, 3.633366146137746*^9}, {3.6333663536805105`*^9, 3.6333663640857286`*^9}, {3.633366406502203*^9, 3.6333664102150097`*^9}, { 3.6333664430842676`*^9, 3.633366479291931*^9}, {3.6333665376672335`*^9, 3.63336659855414*^9}, {3.633366628568593*^9, 3.6333666942603083`*^9}, 3.6333667259751644`*^9, {3.633366760139224*^9, 3.6333667735864477`*^9}, { 3.6333668441297717`*^9, 3.6333668971698647`*^9}, 3.633367212412019*^9, { 3.6333672998969727`*^9, 3.6333673049201813`*^9}, {3.633367413121971*^9, 3.633367427910797*^9}, {3.6333675044601316`*^9, 3.633367536705388*^9}, { 3.633367608157514*^9, 3.6333676121667213`*^9}, 3.633368062422312*^9, { 3.6333681219988165`*^9, 3.6333681313120327`*^9}, {3.6333681835721245`*^9, 3.6333681853661275`*^9}, 3.6333682359226165`*^9}], Cell[CellGroupData[{ Cell[TextData[Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztnd2t3DYQRhfJPtw2UoMrSEpwKrCB7GsAJ0DgRi6wL6nI3aQAZ1cSJZIi hzPD4YqivwM4sLP6oYZHFEVKml8+//nx9tPlcvnr7fGfj5/++fXLl09ff78+ /vHb17//+Pzz4y//Pv789/jz/Pt3AAAAAAAAAAAAAAAAAGAwvt0/XC7X6/V2 P7okAFjwMPo68eH+7eiyAGDD/XaB0mAw5rYafQ8wFFOn+gKtwVhMXqMPAkbj 0btWt9dzH+ZUp8XzPL56MI98vbN+Hu/pr27zRVpTbcwaV4TLOsIVDbYbGDyN 2PfbNUXpvJ5O/e0g5392KPejPgo1MQ8RuKOWVxurxhXhahFhdYO9NX3nENtV itDtKObbpnpye6kL0tXngYSHLK02To0rwtUowkqxgwvHCcR2VR8caVDXySDM Tdz+p9z/fzmebNzCcM6C9GrFGleEq1mEVWJPJ9TtvohxArGXAqd/yDbaxCTs 1Ks59KZboXSwoqzwnBpXhKthhBVir5YcIXZW0cJK2TKu/cbdYSyNRvLw1rUO aLTVSgerS5xh1bgiXC0jLBbbM+s0Yt9vxBq5inZHl94b/WsjKpUONsIXm1fj inA1jbBQ7MCr04hN49qNcKuFEQBlT1WLidLBprglZ9a4IlxtIywSO7KKJ7Yb ZIt3onuM0F7s5H3lVmw67GT5XXySPUjusRsqHWyQJwy7xhXhMogwgUDsnVMF sf376KhJ1A+q2IuddmwtYW5n65hw8rKcO/BoAfLYzZUONssRm1/jinBVRbgM W+yEUdyuyFrCZfXHv6e/zYcmHnWyFXu++94VYi1zTdjjAw9+KYau0UwBW2xJ jSvCZRLhPEyxkz7x+9j+Rfl+q6kmY7Gzk8s2YSe7W88feZE31ZsptqzGTyp2 xibBzeN6g3ar0tpa7Km5ThbIKOxLiHK7YB+Iod4ssaU1fkqxsy5JRkXWXiWz LjPPddAIhaeOvdQD3Ewjjz5zZ/qd82QHtdMKvRliy2tcES6jCOcoik00kRKx 3UWZW8j2Yj9LT9YtM+zkTnNi87oh5Da1ehfF1tS4IlxGEc5RElsiGOdWqLYb YdQVKW/GaJR16YPtn/ExGo6W610qua7GTzeObSU2a4CLgYnYz4MubsNmXiwh tqYTkkOhdxuxzz7zmNw1Z1TksYzJg0P1YtNdkHDBbIHZTzLMF1yvyJZa+6Vh x7amJRz5WZFoXY7Yy+2/bqoxolJs2upoJDI3Z+p+Ys5x+GK30Nrb1ZFia8Jl EWGiqG3F3ka1dt1sxZB2jdhTrLLrppw3eFrYryDJAF8zmomtCldfz2N76yYP c9qoq8rwUQNvedVMjVpsRtcx99Ba1fsdTuz39/d2jbWEhmKrwlUdYWKzxmLf 1zdT4gJ7din3qhObd0OUvzv3YiSN+dpXFIu0hZEJaxeuPNnjZRSJ2o8iXJUR zhfVvMXe3THtVlGXWiE2z2rSim3wQeyD/s7CWOx1Im+3Fr9ozLsqRbgqIpze 3u3t7e1RztrtgCyssUVgDMRuTMthEJAHYjeli2GQHxKI3QyLeXOgBWIbMt/O r3NRsPpAphpAJ9CC4L4eVh8MxLbDDXIinB0AscGQQGwwJBAbDAnEBkMCscGQ QGwwJBAbDAnEBkMCscGQQGwwJBAbDAnEBkMCscGQQGwwJBAbDAnEBkMCscGQ QGwwJHiZFwwJxAZDIhA7mzmOua7/vbgTv8PtfdSR8RW7bSW8wP5SGGL7HzPU iJ35JmRn393gfIpsOT39zyIzztPoM7nzP7s69hEpiB1/8FMsdti+dem2JKGn 6Jv8889NPv4MSnC7IrqvhSczhQUny6HV62UmYqaSIb7Jn/qt2ef6QYmmYmc/ 9OUZdUztCpSeWE7GXPLDeVNxaIgvY5vkmQIELcWmuq367/xXIlV6gtHf2J+k LVNigRItxb7fiGqrTE+pQKW0W5MUO3ksTZMYghLcmUd7D4muqTV6pWfWcSEi P1C8QNu0s6AEnSFuw7wiGBmocx0AQVaXWqVdQQrZiBILFDIRVyYKBwW2vHUF zMWmbsf86YyoVQ9mOhip2036saV09gmxFasAO/gpw6zFnocFGCl9g2bNZb6Y tSHXViQZpzdGdJy2ffnTMBD7IERT5LZi83ftp89T5vE10ZtsgbeReS/nMMQ+ hNSMGIWp2FNzzdzQeo950+TxnbHRO+lq0DW6+F1siP1idClEDcUWpkxd78Jq u8oWeu+ee3lsaWvMvc2W+tiJ3gtQU5Hyx0zsp9biafmLnQCmfe9wg35k+WJj VMSII1ts1ZnFGBhUFcRG7/WCEpUP49jHcEQfW5d7uTAgXEO93kTDi5nHo9iy EjIXrhJb3AVxqz1WavvIkP7Q6P4GnhU5DIHadWLTVueH8ZZxa8FUoxp5zvPi pYR4dApP9zWGPUJRITY9a084vyUi33WzFUPathS60At4HvswLJ4Voa7ImffC fPxNblP8YYd8MWFZ8mitBSOQeIPmIJhP93lveCVejsq9EcOwOtzgtqm4UN6m eErEL7WVzy/OxWgbA2GfWpHGsPpFFDoj/pu8oQZxcxr/f57VkSEua3Oq6Zfd bZmK7Z3XKieDl/TRsX4JwnnA8sbQFoEeqJiNTG4LXoMusBP7uSVcZkEnGImt nH8BoBH1Ypv20gGwwbKPDUA3QGwwJBAbjAi+jw2GBKk6wJBAbDAkEBsMCcQG QwKxwZBAbDAkEBsMCcQGQwKxwZBAbDAkEBsMCcQGQwKxwZBAbDAkEBsMCcQG QwKxwZBAbDAkEBsMSe07j/73Uft/JViU2jJMddf/wdF439W8slOTKCLQS9DU YnsfU+2/zsPvwXITp3pLzv/s8EA5iRiWb736n8dlVJwiAj0FTSP2uVK5xd8T Zoh9iq+1M3NMZC5SBbcVEegsaGKxz5vuipttpPv8Gl6ys1Jhlu+NU7mf0im0 pRHoLmgysc9r9Xeu2EQip+MzIgmUnljqK72sa7Tj41FEoMOgCcTuI+em/stV rPL3msNOqvQEo7+xb6YUEegxaGyxSzmUX0VbsTvMOqpS2q1Jip0MiCICHQaN L3Y3nZCmYveVJ1qv9Mw6FkTc78ULKCLQV9DW3bLErmqucxdEXVrSpmIXcpIW h4OIDFBkdze/o5qGZPWWyA8bL6CIQG3Q2sASOyxbNNSf98Qfq49a+2AYX3Qq txS7eP5mVQlTpCUKyM0Ib6P0ui3p4bxmlVfAETs7acWthfiS51LuzjGRHW9L sddyqusof/V3jTlf7HoP1k5C+ni2fflzKtII1AetCQyxt1MynZWXU2z/Gl2X V7dvsen+FTurmpneZHO6TV15qbx/SLGztVW+r1ynA26V6aI7F9vZklxgSw4v KXCl3smDCrqC3tZ/KLFLBePdHQjyjwfLiyC3Xd/H5lye3F72W+A81kHuVK/3 LpiPLSUvxIoIWAStBeUWsHjGrYdGldw17Nyj61vs/I5yYrO7IeRmq/TObNAv lSICFkFrQVnssre5ydndjvKHb1jeUgEaj2Mvna7900AG9Wqn93oBjYo1zDg2 R5RiL4IjNne8y6C8xJqlCBtMoiXEVnZCctTrTbSio8w8skQpDVWVn++dRkJM nofp/lmR5YG6i3+tbtFY6VtCuvMwyLMiPFGokieqMrG6P7NTdYiNxaZOUt6J GUWjkdbe3oSbL146FRGoDloDeKJQt37f4hc0IrZBrl03WzGk3Vrs+keL/aoU DvA1p9AfXhjheWy2KK4hSp+t+2vTVrPeb2H/UzVT017s2pdBnNjv7+9NG2sx ghHXF7xB46qjVYgEoiTcTlntT2nFR+oN4lXoqVrTezCgHMuoRvhWeztSXX/j F9mKsPayjYGwi6SIgGiV5u/MSkUJIp9bM9/rJp5/a1Nebxx+pwS9mW3ogHUu hCXU1pep2N65rGoMFBHgr9JRiw14hN0vcAyT2F11BU9O42EQwARim9LbMMiP C8Q2w2jeHNgwDdOgPlTMN/7r5BOi2BXTwAvqRE4wAgCr+2ObTgEispNWoA80 7x4CcAbmWQy4DQaE9b4AACdF9GkXAAAAAAAAAAAAAAAAAAAAAMD4/A8dK7dl "], {{0, 158}, {243, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], BaseStyle->"ImageGraphics", ImageSize->{191., Automatic}, ImageSizeRaw->{243, 158}, PlotRange->{{0, 243}, {0, 158}}]]]], "Text", CellChangeTimes->{{3.633365949125*^9, 3.6333660663904057`*^9}, { 3.6333661408493366`*^9, 3.633366146137746*^9}, {3.6333663536805105`*^9, 3.6333663640857286`*^9}, {3.633366406502203*^9, 3.6333664102150097`*^9}, { 3.6333664430842676`*^9, 3.633366479291931*^9}, {3.6333665376672335`*^9, 3.63336659855414*^9}, {3.633366628568593*^9, 3.6333666942603083`*^9}, 3.6333667259751644`*^9, {3.633366760139224*^9, 3.6333667735864477`*^9}, { 3.6333668441297717`*^9, 3.6333668971698647`*^9}, 3.633367212412019*^9, { 3.6333672998969727`*^9, 3.6333673049201813`*^9}, {3.633367413121971*^9, 3.633367427910797*^9}, {3.6333675044601316`*^9, 3.633367536705388*^9}, { 3.633367608157514*^9, 3.6333676121667213`*^9}, 3.633368062422312*^9, { 3.6333681219988165`*^9, 3.6333681313120327`*^9}, {3.6333681835721245`*^9, 3.6333681853661275`*^9}, {3.6333682359226165`*^9, 3.6333682413982263`*^9}}], Cell[CellGroupData[{ Cell[TextData[{ "Tootmisest saadakse tulu 10x + 30y \[Euro], mille t\[ADoubleDot]histame ", StyleBox["c", FontSlant->"Italic"], " - ga : " }], "Text", CellChangeTimes->{{3.633368302815534*^9, 3.633368373234058*^9}}], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["c", FontSlant->"Italic"], " = 10 x + 30 y." }], "Text", CellChangeTimes->{{3.633368302815534*^9, 3.6333683770404644`*^9}}], Cell[CellGroupData[{ Cell["\<\ N\[UDoubleDot]\[UDoubleDot]d oleme taandanud majandusliku planeerimis\ \[UDoubleDot]lesande matemaatiliseks. S\[OTilde]nastame selle:\ \>", "Text", CellChangeTimes->{{3.633368302815534*^9, 3.6333684019693084`*^9}}], Cell[CellGroupData[{ Cell[BoxData[{ StyleBox[ StyleBox[ RowBox[{ "Leia", " ", "lineaarv\[OTilde]rratuste", " ", "s\[UDoubleDot]steemi"}], FontSize->28], FontFamily->"Times New Roman"], "\n", StyleBox[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztnUuO5DYMhgtJLXoxl8gZ5gTJERL0AWaAeBtgEiDIQbKoO9U1co6k/JJl maJIibKlzv8BPeie8kOifssUpRJ/+Prbz8N3t9vt97fXPz9/+fPHb9++/PXL /fXHT3/98evX71+//P36+ef1M/7+LwAAAAAAAAAAAAAAAICLeQy32/1+Hx5X FwQAhufj8yTUz4/n1UUBgOMl1ZdQb+hSQftM/So6VdAFo7cKsYI+gFpBP0ye QI7TOp2Yd+qprEPIGVmBl/CI+PgzedVH0Ls8hpxRs6hNtcYxNWZm5zpWrMnW 3PGq3J2CKXUw6pz/bOPt42zOFGfThr7Y6TbVGsfemFlyne/buFxnrfrlc8WO GY2MkByvczqLkBLRm/17RCuMZJtqjVPDmDlRAc8s7cp1LCRVr+ktSfdRa73C Kk2nXFRTmVAD1joq2jXZplrj1DGm3nVdzpgfk2bl+iplrGTOQwgOiNdoecOe 6xJkCXU7VVXgdJtqjVPJmFq5uuNPlqvWZ3kM8YKtnc/hNXWLaONkR71AqNsF FJIQtKnWOLWMqZOrd3TjcuWvRTgDzkmgKrRWtnb/WizU7TJiuUraVGucasbU yHXnDgrkuj5HwSExr4bFXq77q7mBBjME48ocrdRihFRlN6Ea1FIhV1Gbao1T aky+uDK5BmMXVq6b8cOCrc+dtgMxlOtcctLXitmQsb8fbTg+BU45bOGtfWOx XIVtqjVOtjGTSOV6GGiLnIGgscY/p+P1QWw7uY5Xym4RNiTJtXWq8Ff0ruI2 1Rqn2JhskdOnEVEhoe+6BN+ms7nhTworuc7lIccShRb2a0pcXfwGMxCtSK6K Nu1LrmQIUzrUWk33/v5eMnowkmv0MgYWpgMOy8U1dS8WrUCuqjbtSa6ReLs4 MrC+JYWm95xbCRoRc1MiBu5WbLTFhIBTpc0UbVKuyjbtx3eNTQ4pAlnrW1LW ZtXkGq2JV8iYDXn7ezc4ikS2IoW9qLpxE3JVt6nWOAbGjJCQq1g8SSUUvstL nYHxfNY87MSlLFRIDPALxepdRiNaXq4Zbao1joExmZrVlOv4KhzKv65YJFcX kUjd4c5PxMhG9ze/l7GcWHDBh9RFzeWqNk65MZma5ehI5gwsDbYcXKDXfLmK tLrcIlIjYVw0kGumz5pC8Ayo1wwsfLw1A4Ly7I5xAdfgaX0ob1mwLJdzUwb/ s+e8OJkYMAsezKWQrprKaIApFeSqNk6xMUms5TqXcvzPXa+2K3xOt5Mj1+Tg 6vDpk1iiKZxFXQq5yPUxnLt8a4+bnVGame+CtMYpNCaJsVxXQx0+8r8BkdOS arl6JYn6ZvEFGEFMRr60KeHJ0+y+ApB2KQU+NNUEonLwZ2mNU2JMEnNnIDbn qAtnUbdTaEA2mmBaZdOGxri5dbSSa7hUI13TQznS5dcaJ9eYJM/Pt0+fPg1l FwEL+FZxZSBXO4zjVuAI5GrFlaGA/w2QqwkuZAeqArlmskXs4LCeR3Zk4H+O v+EGtHoakGsm5PcTQWUgV9ARkCvoCMgVdATkCjoCcgUdAbmCjoBcQUdArqAj IFfQEZAr6AjIFXQE5Ao6AnIFHQG5go6AXEFHQK6gIyBX0BHP4fb29jZgSTzo AcgVdATkCjpCKld9aqH1Brut1Zrxk6U7rgQp5gWl9zeva6SyH4eUXHe7jeXt F0psSnZlM4r3oA6TG6a3fQ62iJz/xHdlDeHkethzUpu4LeiO3EaOFzXitkGf LF8NmVMium8qtZ0pYQRQgsgZYDMjRK4b2QrYJbc99Rv6GqF6x5ObntNeQSxL Udlm0SBAJFf95uHMBtkleWr0aIU6wWmMdgkqbcUPAkTTBHq5cvk049n9TMkS 6gS/Ky/1uAkSnaCDtUC0H1luaobYLSs7A/lCnZFs0b+zhvNw4rvHY3siC2Rz sDXkyiaAJJo+5hxS5xYWNbHn+UGcfJI+9ym611Imy4vSZNrJNZ5PIdxafyuY v789l+fBppAJ7/og13opUIHH2L6id5SlXKebppMme8MZl/EoPVVh07vyL/fs jL3wXvOZ44ryBDxGcp3bTuJ9OH+PG7VFzy4ULTeV4MQJuZ6C/qVpJlfxRtPr Hd/f33MbuVC062B/V146OxjkWonpTay3mo1cp6to0rmzIzLFTbNFG0wij6YL HJX9YfBd7RENselTSvPNnZFSLXpzE82Q2uMFee60yAflZN917NZ1zeW7r0aU i9Z5COHKgKRcEXcthV7FET0yv5V3yYzFpwzDoH0LiEuTp594PymY1YJaixGO 04vkmqHVdTHq0i9VeYnqMwyKulCsGaiKbOyVLddUivYh0vQu4Lrvlx6Pq9w/ NhI7Mr+qjpXFiixTVGsGous/yUuktOp9uvklu854pwFmkVddhEN7ar1rfCEi yEKyaGCLHB4aYxfkOVz3zhLIkroOHeeMYJVmfXdJunbxEtwP0wdwAwxhg6Hh JL5jaby9JskpfoZAl3dqPKIJZ9nJ1V+ioP/CT/65IIlNRlN9oAqADEzkmjP8 B0CPgVy1E1YA5FIqV2yyBU6kQK6qNSsAGGAz1ALgFCBX0A/Y0g10BEZKoCMg V9ARkCvoCMgVdATkCjoCcgUdAbmCjoBcQUdArqAjIFfQEZAr6AjIFXQE5Ao6 AnIFHQG5go6AXEFHQK6gIyBX0BG5X37xUq21/FUvRV77lhO7t5PO/mIrqeXq 7YvVtEw1ee0bTuwu3jy5fjr7FqykkmsfWSEOmx/qN7psIbG7JlUovRF6JP/j +pmq1o1YSS7X/vbYl+S1jyUWuXIbYW1O2/guslbp7JuxklCu/Wn1X9Gm341t 0p6VfLl+Ovt2rCSR6+U+QObWHWm5tpPYPUuoE/XT2bdjJYlc19Je17PWkmsT id3zhTpTPZ19E1ZaSMo1N4tZxM/PSEJXTa78W8N9Gi1qtC7ClAQ2yelqp7Mv tZIpKbnuEp8FYb2IkcMt4pV53iOFqCDX7OSYflIG4r1DJeIk61QoVEktytPZ N5VCNCHXfZaBo/C4Fglaze2wrQjdu7tdKdf4kxX13GKpFsjTS9u6cjr7phI0 83Llnp1kqqktEUZennf/Vm3Klc0E+rq6JgxVIFpuKqE8nX1HcmWLKphwWQVT kOd9KUabco0GNuVq9cpaINqK6ew/ilwlfkt6KjC4311DQsTVfNfjLYg4fE7z FYm2Ujr7pnxXvudKuPHOGunXpazxzpUrb2pRSIS+hXRFCnNREw2QFdTW2sBK hpwk18LBRN24K5uVmL8xMcAvFKt3mULRGqWzN7CSHbwUEtPuqWjM0ybP+5Wz WrLR/S5hqGXTiVdkHbBLZ19uJTsSUmCntJ6RNNPbx3NMINEDl5YxxhlrBgK5 ZvqsKfTPgGk6+3bWDCSlwMdqGB0a5nmvJ9foEydea+SHWJXRgGqYp7MvtpIZ aSnElk2OZ+6Lui27dHMC238X5HkvlCtvTmolp3AWdSnbItfH0MJ6NeFQXVtr 8fH53osIkRSO3stRq5s8Dk+cKs97bhkPbCHB1ONfkth9u4uuhP2ls5cc709P V+l1xVIIJso5p+jwmS6clV9GdzdaCdztcxO751atz3T2yeO9Lith8DyQBq4Q GJBmtAvk2hjGcauPw270YgfkWkAroYDmGMVaRVWTNwKbZ+AidWDPs+JWK09k eRezBerwTqKpr6YpJIXuVYC/5AlavQroVcoyiQOpXsr2jgOgB9jZfwCaQzbD DkBLPMqXpwIAAAAAAAAAAAAAAAAAoAX+A1nbBgk= "], {{0, 149}, {229, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], BaseStyle->"ImageGraphics", ImageSize->{203.25, Automatic}, ImageSizeRaw->{229, 149}, PlotRange->{{0, 229}, {0, 149}}], FontFamily->"Times New Roman"]}], "Text", CellChangeTimes->{{3.63336844844179*^9, 3.633368459455409*^9}, 3.6333685091102962`*^9, 3.63336857371001*^9, {3.633368620915693*^9, 3.6333686287469063`*^9}, 3.633369152597427*^9}], Cell[BoxData[{ FormBox[ StyleBox[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"kus", " ", StyleBox["x", FontSlant->"Italic"]}], StyleBox[" ", FontSlant->"Italic"], "\[GreaterSlantEqual]", RowBox[{"0", " ", "ja", " ", StyleBox["y", FontSlant->"Italic"]}], " ", "\[GreaterSlantEqual]", " ", "0"}], ",", RowBox[{"lahendite", " ", "hulgast", " ", "selline"}], ",", RowBox[{ "mis", " ", "annab", " ", "suurima", " ", "v\[ADoubleDot]\[ADoubleDot]rtuse", " ", "avaldisele"}]}], " "}], FontFamily->"Times New Roman", FontSize->28], TextForm], "\[IndentingNewLine]", FormBox[ StyleBox[ RowBox[{ StyleBox["c", FontSlant->"Italic"], "=", RowBox[{ RowBox[{"10", StyleBox["x", FontSlant->"Italic"]}], "+", RowBox[{"30", StyleBox[ RowBox[{"y", "."}], FontSlant->"Italic"]}]}]}], FontFamily->"Times New Roman", FontSize->28], TextForm]}], "Text", CellChangeTimes->{{3.63336844844179*^9, 3.633368459455409*^9}, 3.6333685091102962`*^9, 3.63336857371001*^9, {3.633368620915693*^9, 3.633368631960512*^9}, {3.6333687904255905`*^9, 3.633368796993202*^9}, 3.6333694842424097`*^9}] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[StyleBox["Kahe muutujaga lineaarv\[OTilde]rratus. Selle \ graafiline lahendamine", FontFamily->"Gill Sans MT", FontSize->32]], "Subsection", CellChangeTimes->{{3.632940434746666*^9, 3.632940445994285*^9}, { 3.632940478177142*^9, 3.6329404956803727`*^9}, {3.633353895043041*^9, 3.6333539102218676`*^9}, {3.633449298988798*^9, 3.6334493098620176`*^9}, { 3.6334518760406804`*^9, 3.6334519165695515`*^9}}], Cell[CellGroupData[{ Cell[TextData[{ "Seost ", StyleBox["ax + by + c", FontSlant->"Italic"], " \[GreaterSlantEqual] 0 (v\[OTilde]i ", StyleBox["ax + by + c", FontSlant->"Italic"], " \[LessSlantEqual] 0), milles ", StyleBox["a", FontSlant->"Italic"], ", ", StyleBox["b", FontSlant->"Italic"], " ja ", StyleBox["c", FontSlant->"Italic"], " on reaalarvud, nimetatakse ", StyleBox["kahe muutujaga lineaarv\[OTilde]rratuseks", FontWeight->"Bold"], ". Tema lahenditeks on muutujate x ja y v\[ADoubleDot]\[ADoubleDot]rtuste \ sellised paarid, mille korral v\[OTilde]rratus kehtib. V\[OTilde]rratuse \ graafiliseks lahendamiseks selgitame k\[OTilde]igepealt, kuidas sellist v\ \[OTilde]rratust geomeetriliselt ette kujutada. \nVaatleme \ n\[ADoubleDot]iteks v\[OTilde]rratust 2", StyleBox["x", FontSlant->"Italic"], " + 3", StyleBox["y", FontSlant->"Italic"], " - 6 \[GreaterSlantEqual] 0. " }], "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633449263451936*^9, 3.6334492814387674`*^9}, { 3.6334493513580904`*^9, 3.63344940249498*^9}, {3.6334494619778843`*^9, 3.633449471462701*^9}, 3.633449524487194*^9}], Cell[CellGroupData[{ Cell[TextData[{ "Sirge 2x + 3y - 6 = 0 jaotab tasandi kaheks ", StyleBox["pooltasandiks", FontWeight->"Bold"], ", kusjuures seda sirget nimetatakse pooltasandite ", StyleBox["rajasirgeks", FontSlant->"Italic"], ". Tekkinud pooltasandeid v\[OTilde]ib nimetada tinglikult \:201e\ \[UDoubleDot]lemiseks\" ja \:201ealumiseks\" (v\[OTilde]i \:201eparempoolseks\ \" ja \:201evasakpoolseks\"). " }], "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633449263451936*^9, 3.6334492814387674`*^9}, { 3.6334493513580904`*^9, 3.63344940249498*^9}, {3.6334494619778843`*^9, 3.633449471462701*^9}, 3.633449524487194*^9, 3.633449587994906*^9, { 3.6334496236097684`*^9, 3.633449653421421*^9}, 3.6334499443883314`*^9}], Cell[CellGroupData[{ Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJzt3d9rHOd+x/Htj4v+B7oMvctVftm60JVoU0iIExROdeEkONSxWmJR5Wd1 TIguTIgwGARuRHIIS5wsobYRERhjEHJJitFCOcRiL07cWKI+ISzBxlgYCVum wmL63X12xyvtarU785155nnm/YIYRbKlZ2ee+cxnfuzob99693f/8peFQuHD v5E/fnf0xN998MHRj/7xr+V//v6jf/vnt/5KPviHvygUPpH/ah8HAAAAAACk YmVlxfYQAOTa/Pz85uam7VEAyK/p6WnqEACLJicnFxcXbY8CQH4VCgU5KLM9 CgA5tbm5KSkkdcj2QADk1MrKiqTQyMiI7YEAyKlyuVyosz0QADk1Pz9vUqha rdoeC4A8mp6eNilUqVRsjwVAHo2NjZkU4jIZACsKTVKKbI8FQO6sra2FKcTF egDpM5fpQ7aHAyB3FhcXW1NIqpHtEQHIl/AyvcF7WgGkbHJysjWFeE8rgJSF l+mNUqlke0QA8qWwE5fJAKSp9TK9MTg4aHtQAHJk12V6LtYDSNmuy/RcJgOQ slKp1J5C5XLZ9rgA5IW5TD87O/v222+fP3/evLme97QCSM3IyIi5QUjiyByI SQRxmQxAaqQFmQ/CFArqh2n2RgQgp1pTCADSRwoBsIsUAmAXKQTALlJIy/b2 9v3799fW1u7udO/evY2NjYcPHz569Mj2GN0mS/j/Wjx48GCjxV1Vt2/f/q2F WY+yfuXn2l4M1sgENktelsPGTjK9zZeiTfJ+U0h+ULihmTUlf4brLhyVzJAI g3GULHmZor/1RpbS+vq6rMf0Qynccs0avHXrVo9jFvKX+92QNzqR6drx88au DN8VBdlhXp0sTwnGlFdiakzmm5Vy586dvpaPyQQzz3vJ7d5TaGtrq/dtzYyk SxaFuRpBdkqFDEaWdp9T+DFZubKmZMNMYjLLUjKbfJY3Zw/ISpTt1Ox53W1K JnPCnVS/sdPLUgp3TGFxEpIqQTOFdnXdcIclsRNzDsu/le8T5oZ8IK+0rzTr zuw0zVGPmQbp7J5i5k87WU1h548Qs2YNyj+XWOu350BREpMtvnCX1MpMFfXA ieD48eNLS0vp/KzU9sjm8CEshLq5pJ4/ezG7D/NCOh6/mH1EOoNBjxRnWnzm XGUWcqa7NFPIol25FKFsyD+Rf8uhDbpLIkwi6Pf8iV05SaGOTNkwTcOkUzs5 ypO/kP29CTLCbvi4uK+8du3aCy+88MUXX9y8edP2WABrZP6fO3euWCzKn3G2 BanctvLHXLxWXCbpuHDhwsGDB2dnZ6enpw8cOHDlyhXbIwIsuH79+qFDhyYn J81jJeRj2TtH+1ZSrVMOn+3tbanrjnZ1WfISQdVq1byWcrn83HPP2R4UYMHH H38cPmIiqD9ZYmpqKtq3SjOFHj586NCZH+PixYvFFu+9917rkhdHjhz59NNP W/9Obs8XIVfkQKD1FxOvrKy8++670b7V+vp6OuHj6J0YpBDQkRyChQcFMVNo Y2Mjufxx7rTzvuTIV47Iwl2ALHmOyJBPn3322bFjx8y2IH9OTk7KDjrat0ro jUtbW1ue5U9IFrUE0fz8vHxQKBQuXbpke0SABTdv3pQgMr8YVP48depU5Mtk SbyDQ5JN9/VmjRxzHT169PTp09evX7c9FsAmSR7ZHGJuCOrvcPQ+gow837UI 6NKNIDkQc/QsdL9IIUCLYgRtb2/7ei6oHSkEqNC9WWhjY8P2C0oPKQSoUEyh R48e2X41qSKFABWKKZS3p7WQQoCKe/fuaaXQuXPnbL+aVJFCgIr79+9rpdCh Q4dkw8zP/TOkEKBC8ZbFzc3Nr7766plnnslJKSKFABXqN06vrKzkpBSRQoAK 3QgyclKKSCFARRIpZHhfikghQEVyKRT4XopIIUBFoilk+FqKSCFARQopFHha ikghQEU6KWR4VopIIUBFmikU+FWKSCFARcopZPhRikghQIWVFAq8KEWkEKAi iYdO987pUkQKASrsplDgcikihQAV1lPIcLEUkUKAioykUOBgKSKFABXZSSHD oVJECgEqspZCgTuliBQCVGQwhYzslyJSCFCR2RQKMl+KSCFARZZTyMhsKSKF ABXZT6Egq6WIFAJUOJFCRliKbt68aXux1ZBCgAqHUihoKUVXrlyxveRIIUCH WylkmFJ04sQJu6WIFAJUuJhCQTZKESkEqHA0hQy7pYgUAlQ4nUKB1VJECgEq XE8hw0opIoUAFX6kUGCjFJFCgApvUshIsxSRQoAKz1IoSLEUkUKACv9SyEih FJFCgApfUyhIvhSRQoAKj1PISK4UkUKACu9TKEisFJFCgIo8pJChXopIIUBF flIo0C5FpBCgIlcpZGiVIlIIUJHDFArqpeiTTz6JWYpIIUBFPlPIqFQqzz33 XORSRAoBKvKcQkG8UkQKASpynkJGtFJECgEqSCEjQikihQAVpFCrvkoRKQSo IIV26b0UkUKAClKoo15KESkEqCCF9rJvKSKFABWkUHddShEpBKgghfa1Vyki hQAVVlKoWq2urKysra2l/6Mjay9FpJB1165dO3fuXLFYzMJvDEdk6adQuVwu FAqTk5ODg4MjIyOSSCkPILJdpYgUsuvUqVMHDx6cnZ0tlUoyowgid6WcQrIh S/hIEJn/nZ+flyBKcwDxhaXotddeI4VsuXTp0rFjx2Q6mZUiM0pWiu1BIaKU U0hmy9jYWOtnsl+HZFc7uZO8hEKdBNHxTi5evGh7xXrum2++kV1Y62p65ZVX 5ADN9rgQRcopJDNHKnTrZ2SLXllZSXMM/TJnsdqZLHrhhRfkWGBpp+vXr9te sZ77+uuvZe8QriMpRQcOHGCxOyrlFJItWo7IwiIt27L8b5oDUCSlSI7O4j+n CBFI7Tl48GC4/5JEmpiYsD0oRJT+2WmZMJI8UorMB+E5IudICpmtIOZzihDN pUuXpP8cO3bsrbfeOnToEIdj7rJypV6Sp1SX8WOx7sIUCpQe3oh+SeybQ2Db A0Es3LUYWWsKGZQiIAJSKLL2FAooRUD/SKHIOqaQQSkCekcKRdYlhQJKEdAz Uiiy7ilkUIqAfZFCkfWSQgGlCNgPKRRZjylkUIqAvZBCkfWVQgGlCNjD1tZW ctup3/pNIYNSBOySxOaZE9FSKKAUATupb5v5ETmFDDulaHVp7sup0QHzYJKB ofHTZxcq1fR+fI9uLM3NjA8NNAc5M7d0w/aQ9iaLtPjlzPhwfbRHipVf0/rB v1QWilOjT9Z/7nBtIa1mb032hiOyyGKmUJB6KapWzk80Nu1WT47OfL+awo/v UXV5bmK4bZDPTy38bHtk7W4sFSeGakk5OvXl2W5Rubr0nXLa37g6c3igMDwx t1z7tqvfz4w+OTB65qqbQcTZ6cjip5CRVin609z4YEuvkD3pZ82+kdA2vrow 9fxo8cd+/skvy8Wx4ceDvLF0/mSjuQ3PLGVqC2uk5ZOjJy/umy/VpRkTrLW4 KhZj909ZSv80UBgYnrkafp/qclFSaeBwcTlTS6k3pFBkWikUpFKKqktnDk+c 3zX7zdStbR3jcwkc8/SfQje+m3p/1yCrqwsnh9I+2NlPGEF91cjasVuxKMea pt/JLkH+Vw6k+v3pN+bGa2vt5ZmlP7d8VvYyT8mQDhf/6FwOkUKRKaaQkWQp +rVy9nRx+Ze2z/95aebl2hbxxNSC/iYeoQt18uvC1BMSlBNzNzKyef0sr6t2 wmrqcvQj2eiJZIpQezn8tVI8ksXS2ANSKDL1FApsXD4zm3jmUyjeJq+p2c2G Ti4onYSpVhbOFouPLxrsk0g/Fkef6FhfG6tyd0dygO5GlCtJpJCR5uWzxtQd LVaan6lvFF/OjD+/Y8OvVi7XztD0lQYqKVTb6od3n3e9sTQnG+7p8aGndh6A /FKZ+3AoPGebhOofi4efLBSeGp/7UyLfvrHwG6eRWs/8NDQOxzp9qVIcrf2r pMaWnCQ2opxILoWC9EqRqfHhyYTqjbmJlqtozb1q63WrPo6MFFKoWjn//vhn OyKoenVmuGWMOw5AzLmRBI9KGueZBybOX7189nF9eXJ0qrhQaT/g7VP9MK35 XeV7/qH9ulvzRPcTHRZsI4U6BVSG3blzJ6GNKA8STSEj+VJU32zbDi6qlYsn azeimPn8y3LxxPvSLmqXg59Krws9vrVJtsf/aLsZpnl6ZGcqSmU7I0UiqRRq nkZrjZ3Vq0VTXYY+nIsQRDtOENXu4CoWu130bx52dUqh8GtJHF4nZn19PdGN yG8ppFCQcCmqXyPrfFWlsc+VGPrx20/O7nvZpXlqtCf7X+1qbk+Ptd8M02wF u0+DVJfOHEmqDJhzMm1lo3GY1nMH23lquq/L9/6l0MOHD5PeiDyWTgoZyZSi +h1Ee3WbxoHP0OGTkU+yxD0iq9ZvDm4efbWlZecL1j8vTI0ndXq2eSq/7UWF txPsfWa400Wx/ZJntVLZvXK6pVDjiMylFLp161Y6W5Cv0kyhQL8U1U7ktp31 bWXOscQ5yaB0dvrqmUYStZxCr3/F5OSOk7HV5bMTJxO7mtaIgKGphbafsGdA 1UfVOJtULz37XI4PT7wPdFz4np0XunfvXmpbkJdSTiFDqxTVjsWGu5/HaJyp jnFDo9KV+sb9OW37+PYUkiOjIyf2PHnerArRjxm7pFDzAnrnHvK/q12v6v9S Wfi2mTz7HaE1GmCHFGoGlEvXyDgci8lKCgUqpWj18tTwWKebGFvFv96klULN rX/3SHa1NTksOjWR7J3DJmo6Fp4uX+rIJM/nLW9Hlej5bv93pDYvEbbHnXP3 C3E4Fp+tFDKil6LV72cOj81c7V5w5Hjt9Mzli/UJH3lWq6WQqTFtrWxnCq1e PjlxNuF3UTWukXXqhyaFui+rqMnTaQwe3DvN4Vh8dlMoiFaK9oyg6urSf4ab gxyvHTlSXK6azTxyw9dKIXNs2L6Bt2RCdXnu/RP7tTsN5oCo/aYpU0T2SgAp n403DkdLnl7GEHNlWcDhWHzWU8jooxTtGUG1t64f/tfPZw8Pjc58f6NyfqJx vLbz1NDqwsxMhxMiXX6eTgrVroN3vE8pTKFv/6v40cmUHv3ReD/7zvGYT+79 aILaBbJ4ydNpDK6/p357e9v21uO8jKRQ0GMpqj+CZu/zsU8d//dPmrdHt7wD orHbHZ368vOTU39I+PE1jevd9af1NM7N1u9CfHmPp2c07/QefHH8TIqPSGrc ST48fuZyfVTm8SNJvm1krzEMjJ6sDUF6bHF8aMCt5wtxy7SK7KSQ0a0UhbfV 7UXq/f/82DKxQ+b6VE9P0Ymvcefz41F1f3pYs6pZKABZeBpkyxgG6rdyO5NA NWtra7a3GB9kLYWC/D3Ruro087xTBQChjY0N25uLDzKYQkZefs2HHJWcPBXl rVvIAFJIRWZTKMhDKVq9WpxI5aIYkkEKqchyChmelaL60/ufOlz87xtLxfHh I/vd8oRMI4VUZD+FAq9KUfhUjdr5aCLIdaSQCidSyPCiFJnr+AND458pPE8M tpFCKhxKocCrUgQfcOO0CrdSyFheXna/FMEH/N4NFS6mUEApQjaQQiocTSGD UgS7Hj16ZHsj8IHTKRRQimCV7envCddTyKAUIX0830yLHykUUIqQurt379qe 9Z7wJoUMShFSw1MWtXiWQgGlCGnhlkUt/qWQQSlC0h48eGB7mnvC1xQKKEVI GDcLafE4hQxKERLCE6e1eJ9CAaUIybA9r/2RhxQyKEVQdPv2bdsz2h/5SaGA UgQ93CykKFcpZFCKEB+/fUNRDlMoaJaiF198cWlpyfZ0hpO4WUhRPlPIMKXo zJkzlCL0i8v0ivKcQgGlCFGRQopynkIGpQj9IoUUkUIGpQh9IYUUkUKtKEXo ESmkyPUUKpfLs7Oz8/PzWldOKUX9ksS+cOHCxx9/LH/mJ715K6sid1NI4mJs bGxkZEQiSIKoUChIIml9c0pRjySrDxw4ILNI1oL8KR/nJL15uJAid1NIkmd6 ejr8X3kVg4ODit+fUtSLN998c3FxMVxo8vE777xje1Bp4N7pCEql0mQnsuVK o+j4JcVqkYT2/JQ6pP5TKEXdyTKXuA4Xl3wsn7E9qDTcuXNHfbJ5r1qtrnQi EST7r45fyvg96lKEWvfCZv4n8YMoRV0cOnSodV9QqVTkM7YHlZIkJls+uXtE Jrkangsy54haD9DUUYo6+uqrr44dOybrwqwR+fjChQu2B5WS5CZb3ribQkF9 zytHlIU6iaDWQ4MkUIo6Onv2bKFJQsn2cNKT6GTLFadTyApKEQzbM9EfpFAE lCL8RgrpIYUikwiiFOUW18gUkUJxrK2tffjhh5SiHOJ+IUWkUHwLCwuUorzh 3mlFpJAKSlHe8KxFRaSQIkpRfvCeekWkkC5KUU7wKxEVkUJJoBT5jQtkukih hFCK/GZ7fnmFFEoUpchXtmeWV0ihpFGKvGR7WnmFFEoHpcgzXCNTRAqlhlLk E1JIESmUMkqRH0ghRaRQ+ihFHuDeaUWkkC2UIqeRQopIIYsoRe5aX1+3PX38 QQpZRylyEU/2UEQKZQGlyDmkkCJSKDsoRQ7hrWSKSKFMoRQ5xPZk8QcplEGU IifYnib+IIWyiVKUfTxiSAsplGWUoizj9mktpFDGUYoyixTSQgo5gVKUQQ8e PLA9LzxBCrmCUpQ1vIlDCynkFkpRdpBCWkgh51CKMoJfjKiFFHIUpcg63sSh hRRyF6XILlJICynkOkqRLbdu3bK98j1BCnmAUmSL7TXvCVLIG5Si9Nle554g hXxCKUrZ1taW7XXuA1LIP5Si1PAmDhWkkJcoRekghVSQQh6jFCXt/v37tley D0ghv1GKEkUKqSCF8oBSlBCOyFSQQjlBKUoC18hUkEK5QinSZXt9eoIUyhtK kSLbK9MTpFA+UYri41eSaSGFcotSFBPvqddCCuUcpSgyiXHba88TpBAoRdHw xFctpBAMSlG/SCEtpBBClKK+cMuiFlIIu1CKekQKaSGF0I5S1At+T70WUgh7 oRR1Z3v9NJRKpWq1ansUsXiQQn6sBdtD6Kz3UnT8+PF0tv3kSN5eu3at979v e+U0eLAJ8xKyoFAo2B5CN72UInkJGklgkwRpX0egtldLgwfzn5eQBRlPoaCH UpS3FMrO2zc8mP+8hCzIfgoZXUpR3lIoO2/f8GD+8xKywJUUCvYuRaRQuHxk Nm5ubqa2RjyY/7wEu2S6lsvlV199dX5+3qH3JbWXoryl0G97nBeSFTo2NiZL Y3BwUGZmqVSSNSvzM7mV6/T8N3gJFpkZK+OXiTo7Oyvz1qGLfbtKESnUStZm oRNZ3dPT07K6K5WK1qR1d/6HeAkWyWyUORn+7+Li4sjIiMXxRBCWIlKolexf ZJ/SMYh2kTVudkOy9sNDucl+yA8y+zJ38RIseumll2Sf2Dp7ZVraHlTfZDsy G9Rxxz399NOvvfZa73+/+2KRldtLCnW00g+Z/CbB3MVLsOj3v/99uVxu3YH2 OwOzQ0YupUi24itXriy5SQZ/7ty53v/+Tz/91GWBmLNDvTOlqFQqyWTuq45O OnssEOIlWCQRJHMvvJ4yW2d3SJHJduT6u8+O93lE1uXdrLJmewkcc+I65slA d+d/iJdglzkpPT09LTNT9p5pXuHVVWjebODuu8+0UkjKTBg45kqZrGVzRjqJ qw9Oz3+Dl2CdzExzIGZ7ILEUWm55crQU9ZtCDx48aF8OsjZ1L4Hty/X5H/AS sqHgzl2Le2l/Cc6Von5TKCPPWvRg/vMSssDLFApcK0WkkC28hCzwNYUMV0pR vym0vr6e5hLeiwfzn5eQBX6nUOBIKeo3hTLyhtZyuezQe3868mAT9mAtzM/P 2x5CXL28hIyXoosXL16/fr33v5+RFPKABykEhzhRinpECmkhhZC+jJei3tle kJ4ghWCFKUVvvPFGX496zhrbS9ETpBAsMqWoWCzajpOIbC8/T5BCsMvpUrS1 tWV7+fmAFEIWOFqK+PWsKkghZISLpYgUUkEKIVPcKkUd39CKfpFCyBopRR98 8MHrr7+e/VKUkbeSuY4UQjZJKXr22WczXopIIRWkEDIr+6UoI29odR0phIzL ciniTRwqSCFkX2ZLESmkghSCK7JZimwvFR+QQnBIBkuR7UXiA1IIzslUKbK9 MHxACsFFUoqOHj2ahVJke0n4gBSCu7777rtCoWC3FNleBj4gheC0arVqtxTZ XgA+IIXgAYulyPZL9wEpBD/YKkW2X7cPSCH4JP1SZPsV+4AUgmdSLkW2X64P SCF4KbVSxIPO4iOF4Kt0ShEpFB8pBL8lXYpIofhIIXgv0VJECsVHCiEnEipF PG4xPlII+ZFEKSKF4iOFkDe6pYgUio8UQg4pliJSKD5SCLmlUopIofhIIeRZ /FJECsVHCgFxShEpFB8pBAQxStHDhw9tj915pBAQ6rcU3b17d3t72/aonUcK Aa36KkUcjqkghYB2PZYiUkgFKQR01EspIoVUkEJAF91LESmkghQCuutSikgh FaQQ0IuOpYgUUkEKAT1qL0WkkApSCOhLaykihVSQQkC/pBT98MMPt27d2tra sj0WH5BCAOwihQDYRQoBsIsUAmAXKQTALlIIgF2kEAC7SCEAdpFCAOwihQCk o1QqTXYyODg4NjbW8Uvlctn2qAH4o1qtrnQiEbS4uNjxS2tra7ZHDcB/HJEB sIsUAmAXKQTALlIIgF2kEAC7SCEAdpFCAOwihQDYRQoBsIsUAmAXKQTALlII gF2kEAC7SCEAdpFCAOyqVqubm5u2RwEAAAAAAGDf/wOBgXMo "], {{0, 324}, {386, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], BaseStyle->"ImageGraphics", ImageSizeRaw->{386, 324}, PlotRange->{{0, 386}, {0, 324}}]], "Text", CellChangeTimes->{3.6334501199042397`*^9}], Cell[CellGroupData[{ Cell["\<\ V\[OTilde]tame m\[OTilde]lemal pooltasandil m\[OTilde]ned punktid, n\ \[ADoubleDot]iteks nn. \:201e\[UDoubleDot]lemisel\" pooltasandil punktid (0; \ 3), (2; 2), (4; 3) ja (3; 1); \:201ealumisel\" pooltasandil v\[OTilde]tame \ punktid (0; 0), ( - 1; 2), (1; 1), (2; 0) ja (3; - 1). \ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633449263451936*^9, 3.6334492814387674`*^9}, { 3.6334493513580904`*^9, 3.63344940249498*^9}, {3.6334494619778843`*^9, 3.633449471462701*^9}, 3.633449524487194*^9, 3.633449587994906*^9, { 3.6334496236097684`*^9, 3.633449653421421*^9}, 3.6334499443883314`*^9}], Cell[CellGroupData[{ Cell["\<\ Asendades nende punktide koordinaadid v\[OTilde]rratusse 2x + 3y - 6 \ \[GreaterSlantEqual] 0, saame \[UDoubleDot]lemise pooltasandi punktide korral \ t\[OTilde]ese v\[OTilde]rratuse, alumise pooltasandi punktide korral aga v\ \[ADoubleDot]\[ADoubleDot]ra v\[OTilde]rratuse. \ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633449263451936*^9, 3.6334492814387674`*^9}, { 3.6334493513580904`*^9, 3.63344940249498*^9}, {3.6334494619778843`*^9, 3.633449471462701*^9}, 3.633449524487194*^9, 3.633449587994906*^9, { 3.6334496236097684`*^9, 3.633449662781437*^9}}], Cell[CellGroupData[{ Cell[TextData[{ "V\[OTilde]rratuse ax + by + c \[GreaterSlantEqual] 0 (v\[OTilde]i ax + by + \ c \[LessSlantEqual] 0) lahenditeks on \[UDoubleDot]he pooltasandi punktide \ koordinaadid. Pooltasandi rajasirge ax + by + c = 0 kuulub ka \ v\[OTilde]rratuse lahendite hulka. V\[OTilde]rratuse ax + by + c \ \[GreaterSlantEqual] 0 (v\[OTilde]i \nax + by + c \[LessSlantEqual] 0) \ graafiliseks lahendamiseks joonestame sirge ax + by + c = 0, mis eraldab \ kahte pooltasandit. Lahendite pooltasandi leidmiseks valime \[UDoubleDot]hel \ pooltasandil v\[ADoubleDot]ljaspool rajasirget mingi punkti ", StyleBox["P", FontSlant->"Italic"], " (", Cell[BoxData[ FormBox[ SubscriptBox["x", "0"], TraditionalForm]], FormatType->"TraditionalForm"], "; ", Cell[BoxData[ FormBox[ SubscriptBox["y", "0"], TraditionalForm]], FormatType->"TraditionalForm"], ") ja kontrollime, kas selle punkti koordinaadid rahuldavad \ v\[OTilde]rratust.Kui jah, siis on lahendite pooltasandiks see pooltasand, \ millelt valisime punkti ", StyleBox["P", FontSlant->"Italic"], ". Kui ei, siis on lahendite pooltasandiks see pooltasand, millel punkt ", StyleBox["P", FontSlant->"Italic"], " ei asu. Sagedasti v\[OTilde]etakse kontrollitavaks punktiks koordinaatide \ alguspunkt. N\[ADoubleDot]iteks v\[OTilde]rratusi x \[GreaterSlantEqual] 1 \ ja \nx - 2y + 2 \[LessSlantEqual] 0 kujutavad piirkonnad on esitatud j\ \[ADoubleDot]rgmistel joonistel." }], "Text", CellChangeTimes->{{3.6334504390861764`*^9, 3.6334505868964357`*^9}, 3.6334506773921947`*^9, {3.6334508093840265`*^9, 3.633450887618164*^9}, { 3.6334509247150292`*^9, 3.6334509415318584`*^9}, {3.633450973125511*^9, 3.633450991533543*^9}, {3.6334510641416636`*^9, 3.6334511376645927`*^9}, { 3.6334534732714853`*^9, 3.6328503644600234`*^9}}], Cell[BoxData[ RowBox[{ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJzt3d1rW2eewHHty8X+B0ZXwxJYehF6E3LhK3u3oJsWMszGkJsxMya7BYdQ 2tmoGBwwA2WgwqYlU0orVJIOQ4unBwKb4KQgTMYeFrMOZgjFkSlNWCm2ccYY RX5BxgfvI51YlvXy6Mh+nvM8R+f7gSmxx7JPlN/X51U6/zzy3i/+8+9jsdhv /kn85xe//vBfP/jg12P//o/ig38b+6//GPkH8YeRv4vF/kX8r/LnQwDo0vz8 vOlFACLkxo0bphcBiIp8Pn/p0iXTSwFExdLSEjukQGAcxxHFiTWd6QUBQsEt 5WYd58vk4M9Ti1tHn9zLZYZig1OLJbfj42/duiWKy+VyWpcS6A1uLpOIvRZP ZouvP10tLnYhmX3Z8TvcuHFDPFas6fQuKNA73NLi1KDIJpHJHa/TRHQ3M7m9 jg/2ar1z547OJQR6i7ucScRj8bFs0a195vbUbFH6IGF3d9crjhMEQBcaiysX 7mbuFsodHyd237ziLl68qHsZgR7yMpu8EIsNeZuRbuH+p3efdz5ocnj48OHD o71AThAA/tUV5z6/++n9gp/eDg/F7lutOA5XAr7VDk7+uOx8O7vaeXvS4x2o 9CwtLWldRKCHeMWdH07+LnN8Vq6zS5cu1YrjBAHgm1vMjsVj50ccX7tvNbE6 t27d0rV06uzv75erXh0pFot/a6P2NXt7e+IhBwcHphffUuKZKR9x3a4mKLJE cTcTqYVSN4+pHai06gRBbXnEv/7Ozo7oZXNzU+Sztrb2QoWNjY2tra3t7W3x /c++tLVZFVG/ak/8RbwvO/tPPB3xm8p7GtfX12tPhfhzw2fqnyXxf4knSiy8 91w1/MoSYXr/QKb+RoaVfnBu/3m1y19O8/Pz9cVZcoKgtjxK+vIToLdCFOtK r47mNLwVa8Mq9Sw/VDxczH+txNOtVrzl9H4pSdb13v8r/pqqnrEGBn+NGOMW Zr+e9Xlwsp53DXM9DQvXtYCLs4fXfi18b2O4fkXpFaSvndOJTnFuwRmJD2WW f5y9/d/LPq5YbvbRRx81FGfDCYLIFhdSkdmw9K6lPD+cepA7VW7C1atXG4qz 4QQBxYWLWPmaHpnQiDWx4QQBxYWL2Aw2PTLhIPbcm4sT25mml4viQkbsWpoe mXBoODXgseEEAcWFC8X51Hyg0nsxuOnlorjwMT0y4SD6ajgft7u7e/XqVfFf swtGcaFjdmDCwjssWV/cYfWd9MT+ndkFo7jQic4pubNrKM4GFBc6e3ud39wD HorD2XFKzj+Kw9kZ3xMJEYrD2a2vr5uemtCgOCjBq+p8ojgowcETnygOSnDw xCeKgxJRLc4t5bKZpHcjAl8v5KE4KBHN4tzC/alP56vvvVBeXfj9cLz+3h+t URyUiGRxL2dvPyicuNPH0Ik7EbRCcVAiksU1qBZ34m47LVAclKC4Q/e5MzI0 lu3whkMUByWifdlJeXXRSQ13zu2Q4qBIdF+X6t3WyhMfnlpo8R6WMR8MLHnT 4pkeInQhusV5qicJBivRXXOkd5GzpLJ6FBdGUS+uolxwrsVj8URmWbJtSXFQ guIqitlkp1NyFAclKK6isk93jnUcAkBxh97bpJ9jP054tjTzx+m5p+q+ofc9 /5BOfzza/7OByUd5pd86jKJYXGUbMj6YzGRzla1Id3V+yscJgsgUd2dydCAW 6+sf/Tid/urM9f00N/nu6Mdjl/vEYvZR3ItoFucWsmOJo2lNJDOOl55cNIqr ya/MfZdOf6GoPtHdOxTniWJxpxKx4up59X02fvmN09ZHcccozqcIF1fP2yl7 XZ/vgijuGMX5FMriVuamK1uGb/WP31t5/ZlHabGh2Per9ONn3Q9LfW4Do5Nf fDWzRHHdojifwldc/tHkQN/Rl7wzOffTi5XsZCWWow99qa/sjcvjn6XT382t dNsNxR2jOJ/CV5wn/3j6+kB12u/em3h/4p6ftVJzZX+YWTrFOrGG4o5RnE9h LU54Oj3aF+vrvzI+/bjTwD+ZHn2z4+GR/NLMV+n0F+OXfzY67e8ACsUdozif Qlyc11Hf9emnHef92V+Xfmj5RbXKxHZq3+XxL0SQfnfiXlBcPYrzKczFLc+M vxWLvTk6/aSr2aivLNY/OtldZfUo7hjF+RTa4vIrM59NfvP5aJ+vgW+uLD09 t3LWKaO4Y7wRuk9hLW5lZnJyZsU7bjkwOScmPv/Xub+02/16Mj3+oaLK6lHc CaYHJxzCVVx+ThT2q/T//s93n9x5VDmY7838O5OP/nL0mSB5m7V9x6cFo830 4IRDyIp7nL7S19c/mq6dO2v+TCDyT6ev99U/d93vTvYe04MTDuEqDjYzPTjh QHFQxfTghAPFQRXTgxMOFAdVTA9OOFAcVDE9OOFAcVDF9OCEA8VBFdODEw4U B1VMD044UBxUMT044UBxUMX04IQDxUEV04MTDhQHVUwPTjhQHFQxPTjhQHFQ xfTghAPFQRXTgxMOFAdVymXZXZzgoTioQnF+UBxUoTg/KA6qUJwfFAdVKM4P ioMqFOcHxUGVSBbnlnIPUsPnqwN7fjjlLK52eBIoDqpErzi3tDg1GDtpcCIr jY7ioIrruqZnJ1juc+fda6nvc6XqB6WckxyMx2LxRGZZ8kRQHJSI4H0H3Ny3 U9mXJz+TSYjBTWRy7ZOjOCixtbVlenAsUMwm47F4Mlts/yUUByW4m9Xh63Xc 26lF2S8fioMqpgfHuHLBuXZuxClId2cpDqqYHhzTSgupxHtOocWBypgPwS9v 8+KZniB0x+DMWGBrMfWefHvSY0ll9SgupEwPjkHF5czNm1n55uRrFAdV9vf3 Tc+OEeXVbGrMee7zZCTFQZXoXXNy6OWWzDwp1X9m4XZm9mW7B1AcVIlecSK3 icHmgyDxsWyx7RqP4qBKxIpzi9mxeKujjpwBRzAiVtwpURxUoTg/KA5KrK2t mR6ccKA4KMGVzD5RHJR49eqV6cEJB4qDEsWi5PgcjlEclODVOj5RHJTgyIlP FAdVTA9OOFAcVOF8nB8UB1V2dnZMz04IUBxU4XClHxQHVTY2NkzPTghQHBQy PTshQHFQiIMnHVEcFNre3jY9PrajOCjE1ZUdURwU2tzcND0+tqM4KMS1Xh1R HNSK3D2tukRxUIvDlXIUB7UoTo7ioBaHK+UoDmpRnBzFQS2Kk6M4qEVxchQH tXjDEzmKg1oUJ0dxUIvi5CgOalGcHMVBLYqTozioRXFyFAe1KE6O4qAWxclR HNSiODmKg1rRK668unjf+VNqOD6Uye11/GqKg1oRK24vl/kg+eXvhuNiYCkO BkSsOI/obojiYEQk3+qE4mCS6QkKHsXBJNMTFDyKg0mmJyh4HYqL+RDwErdc PNODg1MyODyGsI6DSQcHB6aHKGAUB5Oid7NUioNJ0btZKsXBpOidBKc4mERx EhQH5aJUnFvMjsXrK0pkctJbnVAclItScV2jOChHcRIUBx1MD5G9KA46mB4i e1EcdDA9RPaiOOhgeojsRXFQbmNjw/QQ2YvioBzHKiUoDspRnATFQTmKk6A4 KEdxEhQH5aL3ap0uUByU41bgEhQH5fb2Or9oJbIoDsrt7++bHiJ7URyUMz1B VqM4qBXJd0HvAsVBLU4NyFEc1Nrc3DQ9QVajOKjFqQE5ioNaFCdHcVArem/I 3B2Kg1rlctn0BFmN4qAWxclRHNSiODmKg1oUJ0dxUIvi5CgOalGcHMVBLYqT ozioRXFyFAe1KE6O4qAWV3nJURzU4rUDchQHtXhFqpyFxcmZHih05rrS+/JG G8VBOQ6eSFAclNve3jY9JvaiOChn2+FKq2bbzuIkC2Nqiiw8kmPhInnqi9vc 3HQcZ35+PpfL7e7uBjI+jWybbYrzw8LxtnCRPFtbW/X/ZEtLSxcvXvRmTPzh xo0bt27dEhmKBoM5lWDbbFOcHxaOt4WL5Gl+A718Pl+LrtnVq1c/+ugj0aBo U2TYcTYAqHXp0iWxKrxz587Dhw8bNkdNLxoQCaJBsRIUW6GmFwToNd6+nljB eft6Yov0LHsoh+zH+SBZGFP7JjH7dposXCRP8x0bRTgt9+PqD6T42YlTPk7B ozifLBxvCxfJ03A+TtTkDZiIy/8REoVsm22K88PC8bZwkTz1xe3u7ho8E2ch O4uTMD1N6My2a06sQnFQjrsSS1AclOO1AxIUB+UoToLioJzpGbEaxUE50zPS hru6eNf5U2o4nsjkVL5IvZjLZpKD8VgsPpj8enG1w/rdvuLKq4v3q8/LUCbX Ygc88PF5OvfNxOW+6hPUd3k8PbOUD3wRmq3MTU+O9r9eqIlv5p6aXqBj6+vr wQ9NZ+5yZmTsSzFW4ilTWVy54FyLD05kK6EVc87Y4ODUYkn23S0rbi+X+SD5 5e+qz4sNxS3PjL8VO6Gv//o3hqPLL3w1MXlv6Vnlj0t3Jy6/Eeu7Pv3Uhl8E Fc0vHPDBLeVmHefL5ODPU4tbR59xxIojPuIUFK6PRHeJuMLi3IIzEr+QzL48 +vi5M3JhMLVQav8Qy4rziO6GbCgu/zj9yyu1NcjTufT16mrlncm5n4JcjIaF evrd5189fnb88dzkQOzN0ekn5hbphFMU5+YyidoUVnJwS8u3q7911a6PlBdX HdT4WLbotv9MI4pr76e5Tz4+ue74aW7yHbGaG5h8ZMsa5XVxZn8JnHDq09/u 6vdjlb2hoczi7FTy84VOO0Sn+hlKi2vx3dxidiweq1vrNaG4buSfTl/vs2mF 8uLFs8fpqwPGN3TrnOGCE29czw0OT2V15HaourhiNhmPxZPZ+uu2q+vreCKz 3O4nUFw3quu4/omZFSvmO780kx6/YlVuL854iVerGVZJaXHexnCr4mR/BYrr Qn4hfaX/SnrBggH3tm89b1yeuGtPdGc6/V1aSIkNS+l+0JlQXGt2FpdfmZkY uJJ+bM1sVw7mVE4S9Ino7Pg9UHGG4rYWM19/74i1XOt/+ta8iCTq+2WrsjUr i1u5N375t5ZsT9bLP05fEc0NTM7ZsWinLc4tLf4xs7hVP7Hu6o8/Ss9tdf9D OHLSkn3FrWQnR8enl551/koDnkyPvmnPKbkui6v8W8dHnP8r/Pm280PlNNbR GC/XPqMQZwdas6y4/OPp9z9MP7Yztxev9+nCuo6rXrMRSySd5VLbz6ij5Qz4 20dn7TkDrkIlt/cnH9VdRpVfuvfbT76zY4VSYdHxnAqrXziguriGq7yWMyPx kF3l5bGmOJHb9YHmffG+0WlzFzJWtyH7Ryen51ZeVPOfsOsEga3FvcwmL9Qf T5Ec3OhSMff9VPUKmfPDqQe5TjuelhXn7XjWafp1FODsVGe7BbNnwJ8tTf+m /yj9/tGP01561rC1OFtYVlxnpgcKHVCcHMVBLYqTozioRXFyFAe1uEGqHMVB Ld6sUo7ioFYwN2EMLwuLqy2P6dnBaZzqXRcihOKgnOkJshrFQbmDgwPTQ2Qv ioNy3HdAguKgHIcrJSgOynG4UoLioByHKyUoDjqYHiJ7URx0cF09b8Zlow53 ymhAcdAhMtczd75TRgOKgw4RO0Ege9eCBhQHHSJ2goDiYBjFtUNx0IHi2qE4 6EBx7VAcdKC4digOOoS/OC8iifqbC1AcDAt/cV3pUJy0XPP1UVwPiNillazj YBjFtUNx0IHi2qE46BCZ4jrfKaMBxUGHyBTXNYqDDmtra6bnyFIUB01Mz5Gl KA6amJ4jS1EcNDE9R5aiOGgSpTde6ALFQZPIvPFCdygOmlBcSxQHTSiuJYqD JhTXEsVBE4prieKgCcW1RHHQhOJaojhosr29bXqUbERx0CRib7zgF8VBE4pr ieKgCcW1RHHQhOJaojhowsvAW6I4aEJxLVEcNNnY2DA9SjaiOOhjepRsRHHQ x/Qo2YjioA8XejWjOOgTsbuB+0Jx0IdTcs0oDvpsbm6anibrUBz04QRBM4qD Vvv7+6YHyi4UB63YlWtAcdCK4hpQHLSiuAYUB60orgHFQStOgjegOGjFscoG FAetTE+Tbm4p9yA1fL46sOeHU87iaodLSSkOWpmeJq3c0uLUYOykwYmsNDqK g1amp0kn97nz7rXU97lS9YNSzkkOxmOxeCKzLLlzHsVBK9PTpJGb+3Yq+/Lk ZzIJMbiJTK59chQHrUxPU7CK2WQ8Fk9mi+2/hOKgT9TeXKi6jns7tbgl+RqK gz4RK65ccK6dG3EK0vufUxz0iVZxpYVU4j2nwNkBGBPm4vZymaGYzIXkicMm W4up9+Tbkx6Kgz5bW50nsCcUlzM3b2bbbk5KyzVfH8X1jGhcxlxezabGnOfS vbdjllRWj+J6RgSKq+SWzDwp1X9m4XZm9mW7B1Ac9On14kRuE4PNG4jxsWyx 7RqP4qBPT9+Y2C1mx+Kt9sg4Aw5TeE/mZhQHfSiuGcVBH14A3ozioE+vHzk5 DYqDPhTXjOKgD8U1ozjoE5mrvLpAcdAnzFcy60Jx0Gd9fd30NFmH4qCV6Wmy DsVBK06CN6A4aLWzs2N6oOxCcdCqWJRc1RtFFAetuDFxA4qDbq7r8+XRkUBx 0I3rmetRHHRjV64exUE3duXqURwCwK5cDcUhAJyVq6E4BIAXEdRQHALAJc01 FIdgmB4rW1AcgmF6rGxBcQiG6bGyBcUhGJwg8FAcgsEL5TwUh2BQnIfiEAyK 81AcgtHT99npAsUhGLxbrIfiEAyK81AcgsGllR6KQzB4f2YPxSEYFOehOASj R18J7pZy2UwyUR3Y88OpB7lSh0trKA6BMT1Z6rmF+1Ofzq9WIiuvLvx+OB6L J7Pyd3WhOATG9GQp93L29oPC8TptL5cZisXHskXZao7iEBjTk6VbtbhEJifd rqQ4BKbHL/RynzsjQ2PZgnxHjuIQmN4trry66KSGO+d2SHEIUG8W5y5nEvHX IxsfnlpYZR0HS/TyxczVkwSDleiuOQXZLxaKQ2BCdWll9TCIzIVk9uXJh5QL zrV4LJ7ILDes5qTfx3x9FNerQlXcqRSzyU6n5CyprB7F9arev+VHZZ/uXPM6 rh7FITA9f2mlW3BGzrEfB1v0WnGVbcj4YDKTzVXW3e7q/JSPEwQUh8D0WnFu ITuWOJrWRDLjeOnJURwC02vFnQrFIUimh8s8ikOQTA+XeRSHIJkeLvMoDkEy PVzmURyCZHq4zKM4BIk77FAcgtSbL9jpBsWhK3/zYW1trd3DKY7i7LSxsbG5 ufnq1avt7e3ykYODA/H8iP96H4ov0LoM6+vrW1tbYhnEz9rf3z/FP6V4lHjs zs6O+CbFYlHEeLrv00uiXJyY6lf6eZMmfpZ8YcTXiK8Uw9nVTO7t7Yku1D4n ojKxGF7dUM7+4uo3V7xf+83EkHTcsBGzVPsOYsVhZKK81ZP46bUlF8mc/de+ COQs3XmxiyXhsEYAbC7O9IKEjChXJCzfjXpR3VY83foUSlBcryo3YRUGAIDN /h+z4MAN "], {{0, 354}, {294, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], BaseStyle->"ImageGraphics", ImageSize->{269.5, Automatic}, ImageSizeRaw->{294, 354}, PlotRange->{{0, 294}, {0, 354}}], " ", GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJzt3d9rW1eCwHHtj4f9D4LYh2XJSx/C9CHkwU/W7oD6kIJnZxJIC+t2THZL HIaFmY0GQwphSBgYI9NiltmNUXEKQ4u7Fwyd4tYgTOq8GFS8EIKiUNp05Ngh sTGqkhgHX7xHOteOLOvH1dG995xz9f3ADIlqWVfSPV+fe+6V849j//Hzf//r RCLxm78T//fzX/72n379619O/OJvxV/+eeI//23sb8Qf/v6vEon/Fv+r/Xkf AAAAAAAAAAAAAAAAAAAAANCvSik/7+QyqdRUoep6t7nFXPpkanKlqnXLAMCH nVLufMJzOpN/6t1c61gykZzIV9yOdwcAQ2wXJs8mEsl0rvgqWyJl782WyBgA S7ilXFqELJOvvLrl06nD6RkAGK+5Y+7D+Q+/WGMyBsAilXwmmUikc/UDyd21 +dz82m7XO3311VfhbxkA+NPQMXftiw/nH3adi5XLZcdxotg2APDj8ATl2l1n 9ut1H0eUq6urV65cCX/LAMAfr2NvZ37/8auryDoSk7GLFy+GvV0A4NvTfOZ0 InnZ8bEsJk1PT/P7jQGYRHRsdLKw7f8O4qBSdGxrayu8bQIA39xq8fPZpd6u s5CfASiVSmFtFAD45q5//XH+Lz1FTEzDZMe49AKAPrtrzuXaJ5HWvp517vX6 eXAxDZMd49ILAPrUP1OZHJ1cLCn8UgsxDZMd49ILAJa6deuW7BiXXgCwlDxZ KeneFljp5cuXP9bt7OzsHtC9URgsIyMjhx0rl8u6NweWcV13Y2PjUXviv24e 2Nra+vHAs2fPdo/S/VRgsUQDLr1Ar0SdOkQsVE+ePNlssL29LfIoeijSqvZc xB13exHsKwllhycrOWUJBWJOpStinYnEVSoVcZx7vGkyVs+fPxfRE/NDEUDx xf0/4mFOxeMeP8re29vT8gYNiDt37jR27NatW7q3CNYQY7PzEaUhGg9sTdjg pglky0NshfS9fPlSfMPHjx8fPpB84vJYXnQ7xhNIMQFr7BiXXsA/MWo01mBA iLmieJ1FhdodLIvbxX/taUrZNG9UOxgX2RT3EgWW30F2UtwYxJ7Vsxs3bjR2 bGRkRMtmwDpithDe4EVLImgyOIcNEbcEOMOU8zfRt+PzQ9kreRiua0672YbY qnfeeSdx1GGiZWA746h/YIm9XcvODByXOKZQKPT0HUScRQ9FrvuZUookip8s TakXR/qyt4dTX7JpDo2nKYFGIlnHO7a8vKz8DUWFOh/LBzIi5NRXPIqug3EI yjsJECyRrOMdm5mZCeSbdzjx3aj/E/dyIZQJW8SYj8EQIlnHO3b9+vXAH0ik pvHkryQSJ25pPE0cCLlWKcvWtFype+jHinh5g33jADUiWa+//npjxN56661L ly7p3q6INF5WxBJcrzhfCUOIZC0uLjYt8r/xxhu6t0u/pgtsGud1LModEnNs 3W8U8EhE7NHRU5bir/Pz87q3yw7ydKo4gJWV0x0VDZ4/f677TQA8TR2DMrkG KLK2s7Mj5nLHL9iTJz505ycwHFrCHHQsYhsbGyJ3uiMUDN2vJeChY1o8efJE +dfLmEP3qwh46JguMUiZ7pcQ8NAxjTY3N3WnqC+6Xz/AQ8f0evbsme4aqdP9 4gEeOqbXxsaGvRff6n7xAA8d0257e1t3kBSZ8OtVgUd0zACiBrqDpIhPi8MQ dMwElp64pGMwBB0zgaWfbKJjMAQdM4GlZy3pGAxBx0xQqVR0N0kFHYMh6JgJ LL0gln9tBIagY4bQ3SQV/FZYBOnB8lx2fEjGaGg8+9HCatnvXemYIWy8GpaO ITDllZkLryWOODH0q098poyOGcLGU5Z0DAEp35/71T+cu/bJ8v3631YXPpAT s5+Mz931c386ZggbfykZHUMwyrezF3638KBx7vXdcvZNMSUbzt72MyOjY4ag Yxhc9z+f+d+meVdthnaCjtlma2tLd5Z6RscQmnrHTrw78833fr6ajhlic3Pz xYsXusvUGzqG0NydGz8zdPXPD/x9NR0zwfLy8uXLl0dGRnSXqTd0DCEpL2eH h64dXTFrlugmsq2FKNilS5cOX/k7d+7ojlMP6BhCUbsG41+uLhT934N86dJU MGF6etquVTI6hhDcv529+K8zK76vga2hY9GLQcEkOoagfb86d3U8m/e5LHaI jkUpNgWT6BgCJSL223O+1/Yb0bFoxKxgEh1DcOoRa/4g0v3lmT/MLH/X9c50 LGyxLJhExxAQEbHfDLU86TicXfaxUkbHwhPjgkniueh+jRED5QcL11pHjOv5 tYp9wSR+jyIMQceCNSAFk+gYDEHHgjJQBZPoGAxBx/o3gAWT6BgMQcf6MbAF k+gYDEHH1Ax4wSQ6BkPQsV5RsEN0DIagY/5RsCZ0DIagY35QsJYeP36s+50B auhYZxSsA91vDuChY+1QsK50v0WAh44dR8F80v1GAR461oiC9UT32wV46JhE wRToftMADx2jYMp0v3WAZ5A7RsH6pPsNBDyD2TEKFgjdbyPgGbSOUbAA6X4z Ac/gdIyCBU73Wwp4BqFjFCwkut9YwBPvjlGwUOl+ewFPXDtGwSKg+00GPPHr GAWLjO63GvDEqWMULGK633DAE4+OUTAtdL/tgMf2jlEwjXS/+YDH3o5RMO10 7wKAx8aOUTBD6N4RAI9dHaNgRtG9OwAeWzpGwUyzt7ene6cAPOZ3jIKZaXd3 V/euAXhM7hgFMxkdgznM7BgFMx8dgzlM6xgFswUdgznM6RgFswsdgzlM6BgF sxEdgzn0doyC2YuOwRy6OkbBbEfHYI7oO0bB4oGOwRxRdoyCxQkdgzmi6RgF ix86BnOE3TEKFld0DOYIr2NaC+ZWS/lcJl1/2GQqc3O+sO5G8sC6Ht1dX5n1 HjGdmV2J4NnSMZgjjI5pn4O5a85YMnFUeiK/1vfgfprPnM3kn+p5dBHH1kF0 q8XZ0eSp0dzdau3L7uZGT6cmFsNOGR2DOYLt2PGCXblypVwuhzuimonapEcn vyxVayP51UQlOZGv9Dm2/XQs0EcX7XIcJ5dJie+QyuRadqy6MplKJsecw1C6 pVw6cWrMeRhqyegYzBFUx1oWrFQqhTmSWnNLs2OTK9UjNxVzaTFDOp8r7fT3 vbt3LIBHb2qX+HO+VG371W4lP5FMJNO54qtqyUdMTRWqIZaMjiFw5dWFj2b+ Jzs+nBjOLpd7uGP/HTOnYHVuZenzpeaZj+jP6Ug6pvroje1Kjk5+1rldx7/5 6aNb1fLGgNExBKu8/MGF8d9dPfdaLSIRdqzvgrnV0pLj3MykfjZZ2D64xckc PUoKQm1cH/metW58lsucTTXMneqHY2cPtqTd9+m+Ptb90RvUH7S2gJbJfeYo nA+o5DO1tbimSO6UcucTTZO0oNExhKG8nB2OqmOBzMEOhrBcCM+VXLleffjX 4IZcbbA3BMo70Es0LVvJ7Ulm8pW230ipY02PfpS7XpivlTzpTcN6TJn3GjYv vsmOdX4u/aJjCEM0HQv8KNJdX5xI1ZePCktTmT+urO8GONbqxKB+O9W0ZrXv LY83zWTc0ux7r+Ywcumpmy7JbfPoLVRK+Xmnx6bRMcRM2B0LbR1M5uJkanQq H3zE6ldBpFuueMvB3riItFOavdnxrGLP87H2j975brVZmvPZZG122rFpdAwx E17HQl/Jry/ytBl03pDsqP2CdvVubizjrLXMY3PH3LUvPpzvfK1Cjx3r9Oje Y4qGn+w8+TpyCuDYxRut18fkOj/rY7BPGB2L6FykPMQL4Pquo9y1/Pvv54rt piRHr1hwH85/+EW3kwu9dKzLozd8od/J1/7+82rzzK71RR1BnZ/tuNmuG9i+ CxwItmMRXk2xXch9vOiIaUWg405kZOJyx5OPjR3bXZvPzXeaOEm+O9b90dvc z3/TPLtrzuVk04xUxi3YcyWtBLwHA8F1LNrrwdxq4U+5wnZ9ncebGrnr337b 5wWctYy81/xRoGrRmZpvHNoHJygX14qfzy75udDDX8f8PXo38qKUz+TnNDs1 TdP1/Pt0DCHov2MRFqy2NiWG3l/Wvp517tXO5R1MIYqHtyirZSSdaKF5vcjr 2Gjm97mC74tOu3XM96P39JS8pk182OrQW/wsmEol0hmnWPXO/56M4POV+3QM Iei/Y1HNwfYPjoa8odfmFjXbhcmzbZ7TseNWeX4hyGtue3n0IInQfTk5eioh p26LPj8L0K/Q9mUMrqA6pvVTRdESHVO4KAIHQtuXMbj8d6zdHOyQ7vERjUrR +XQphCvWBkck+zUGSvnBwrUh0aChawsPuoTs+DrYIOVL2l1fcvLdT1Cik2j2 bAyK+3PjJ44U6cT43P1WX9iuYIPSMfehM3Y6nfu/taVPHR9XdqGzqPdzDLx2 5yIHq2PyEoXRqcUSEQuA7p0aA6Tz1RSD1TEESveujYHg53owOgZlundwxJz/ K1rpGJTp3s0RW71ek0/HoEz3zo4YUvtUER2DMt27PGKln89F0jEo073jIyb6 /2Q3HYMy3bs/rBfU76agY1CmexDAYsH+dh06BmW6hwKsFMbvB6NjUKZ7QMAy 4f2GQzoGZbqHBawR9u9opWNQpntwwALR/JZpOgZluocIjBblv/RBx6BM90CB oaL9t4pq6BiU6R4uME70BZPoGJTpHjQwiK6CSXQMynQPHRhBb8EkOgZlugcQ NDOhYBIdgzLdwwjamFMwiY5Bme7BBA1MK5hEx6BM95BCpMwsmETHoEz3wEJE TC6YRMegTPfwQujML5hEx6BM9yBDiGwpmETHoEz3UEMo7CqYRMegTPeAQ8Bs LJhEx6BM97BDYOwtmETHoEz34EMAbC+YRMegTPcQRF/iUTCJjkGZ7oEIRXEq mETHoEz3cETP4lcwiY5Bme5BiR7EtWASHYMy3UMTvsS7YBIdgzLdAxRdDELB JDoGZbqHKdoanIJJdAzKdA9WtDBoBZPoGNTs7e3pHrI4YjALJtExqNnd3dU9 cOEZ5IJJdAxq6JgJKJhEx6CGjulFwRrRMaihY7pQsOPoGNTQsehRsHboGNTQ sShRsM7oGNTQsWhQMD/oGNTQsbBRMP/oGNTQsfBQsF7RMaihY2GgYGroGNTQ sWBRsH7QMaihY0GhYP2jY1BDx/pHwYJCx6CGjvWDggWLjkENHVNDwcJAx6CG jvWKgoWHjkENHfOPgoWNjkENHfODgkWDjkFNgB0T+15Q30qX40/h3r17169f t6Vgtg//eHTM6o23FB1r1PgU7CqYZPsIomPKXrx44TiO2D/L5XL0j64dHWsk n4KNBZOsHv77dKw/Yhc9c+aMfPUuXrx448YNUbY7d+5Ysev2iY41Ek/B0oJJ Vg//fTrWNzErEwVLtCISJ3bmW7duyWnb1taWro1U1vJ5ARhwh9O21dVV839e 6361ANhhZGRkenrazKbpfm0AmEhUq/Fg095zBIO5PtZuJT9h87LMPutjZtC4 8V3Xx8RcSx5F2puslgatY53PRVo9fPZjsf10TJmokzxf2ZQsMw8SgzU4HfNz NYXVw2c/FttPx9RsbW0NSLJaGoSO+b8ezOrhsx+L7adjUPDjjz/qzkyI7L2i dTDFo2OIXlw7RsFsRMegJn4do2D2omNQE6eOUTDb0TGo6btj5QfLc9nx4fqu d2JoPDu3fD+YKvWi74K51VI+l0nX75pMZW7OF9bdEF/1qLjrhXnHyWVSifO5 0k6ED7sy672Y6czsiv+XMj4d0/TKD6z+OlZ+cPuDcycSR5x4d+ab7wMrVDeB zMHcNWcsefRZJNIT+TW7U+YWc2MTNydH688sstHkVouzo8lTo7m7VfG36t3c 6OnUxKLPlMWkY3pe+YHWV8ce/Pna+LWZhdVy7S9iYjYzPiSidmI4e7scVKfa C+4o8mk+kx6d/LJUrQ22V3OJ5ES+YnfJasSYSiejG03VlclUMjnmHP4McEu5 dOLUmPPQz0sZk45JEb/yg61SqQTYlvJydjj8jgW7DuaWZscmV6pHborRHhjp c3Er+YlkIpnOFV9VS25AaqpQ7V4yOgY1m5ubARam1rGhawsPwspYCCv5bmXp 86XmeZeYoZ2OyR4Y6WiSr9vpTP5ptxtbo2NQE2jHigvZP8ythrI4Fu25yNrQ azw4sliUo6mSzySPrwjtlHLnE02TtDboWGjcamnJcW5mUj+bLGwf3OJkji4C 2Cugjn2/unArO/7TMM5XariaojYezx683ZaLcDTVl8KOryvKjiWSmXyl23eg Y2Fti3xrvFNYuZIrT8cc/lX39vUtgI6Vb2eHG89Z/vTqQjGIgOm6HkyMu7dT TStm9qJjupjUMcldX5xI1TepsDSV+ePK+q7uLQpMYMeV5dWFmaveNRjD2eX+ Vsg0XtFauwYj7WtR2g50TBfzOnZwIuZkanQqH6OI7bfpWP20YxcnxueOH0CW v5m5UEvZm9nl7/QXzNuROmoadNW7ubGMs2buW3zkAKHdc2oshv71MbnOz/qY GervkZ+fKXYJ9nzlo0d358Z/otYx/Z8qctfy77+fK8brHY5yNLV+rB5O/tKx 0NUv8IvJtZENgu7Yd8vZN3s9rtRfsP16xCYux2Rtv1Gko2l3zbmcbLrEQm6A v8VkOhay7ULu40VHzMiM2qoABNyx8srMhaELMys+M2ZEwfZlxN5r/iBStehM zVt/Kofr+XUxrmNutfCnXGG7/o54h/nu+rffxmIpuJ+Oyav3X11r8WD5k6vv Xrg2v+qjYqYUbF9GrOWak68lHdPJ44hEZJeRiMEylUqkM06x6p0gOzlwn6+U on7l26mdZxE/Wf6y9vWsc692Fv5ghlw8vMV+yhGrhyufPffawX732rmr//XR QveGGVSwmu3C5NlWEUuY9JNUjVyYagxzNKsibrX05eToqfojjk4ulvyPlLh0 TNcr35I82Pd+srS5xXp9daxHhhUMxolLxxA1CgZz0DGooWAwBx2DGgoGc9Ax qKFgMAcdg4K9vT0KBnPQMSgI8B8Tp2DoHx2DgkA6RsEQFDoGBX12jIIhWHQM CnZ2digYzEHHoEDhH32jYAgPHYOCnjpGwRA2OgYFPv/xSgqGaNAxKOj6S3so GKJEx6CgQ8coGKJHx6BgY2ODgsEcdAwKKBiMQsfQq5cvX1IwGIWOoVfyYn4K BnPQMfTqhx9+oGAwCh2Dfy9evJienqZgMA0dg3+iY2fOnKFgMA0dQ08cx6Fg MA0dA2A7OgbAdnQMgO3oGADb0TEAtqNjAGxHxwDYjo4BsB0dA2A7OgbACO56 Yd5xcplU4nyutNPTXekYAP3cYm5s4ubkaLKWIjoGwFqiZukkHQNgMToGwHZ0 DIDt6BgA29ExALajYwBs10vHEt1EsL0AYs8t5dLdapPM5Cuv7sB8DIDl6BgA 29ExALajYwBsV12ZTImOnZ0sbPd0PzoGwABP85nTR08ATOQrrs870zEAtqNj AGxHxwDYjo4BsB0dA2A7OgbAdnQMgO3oGADb0TEAtqNjAGxHxwDYjo4BAAAA AAAAAAAAAAAAADCA/h/fMVcy "], {{0, 283}, {408, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], BaseStyle->"ImageGraphics", ImageSize->{395., Automatic}, ImageSizeRaw->{408, 283}, PlotRange->{{0, 408}, {0, 283}}]}]], "Text", CellChangeTimes->{{3.633451611698216*^9, 3.6334516159102235`*^9}, { 3.633451694643562*^9, 3.6334517462952523`*^9}}] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[StyleBox["Kahe muutujaga v\[OTilde]rratuses\[UDoubleDot]steemi \ graafiline lahendamine", FontFamily->"Gill Sans MT", FontSize->32]], "Subsection", CellChangeTimes->{{3.632940434746666*^9, 3.632940445994285*^9}, { 3.632940478177142*^9, 3.6329404956803727`*^9}, {3.633353895043041*^9, 3.6333539102218676`*^9}, {3.633449298988798*^9, 3.6334493098620176`*^9}, { 3.6334518760406804`*^9, 3.6334519165695515`*^9}, {3.6334520381717653`*^9, 3.633452066688615*^9}}], Cell[CellGroupData[{ Cell["\<\ Sissejuhatuses toodud tislerit\[ODoubleDot]\[ODoubleDot]koja \ n\[ADoubleDot]ites saime kahe muutujaga \ v\[OTilde]rratuses\[UDoubleDot]steemi. Kuidas selliseid v\[OTilde]rratuses\ \[UDoubleDot]steeme lahendada? \ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633449263451936*^9, 3.6334492814387674`*^9}, { 3.6334493513580904`*^9, 3.63344940249498*^9}, {3.6334494619778843`*^9, 3.633449471462701*^9}, 3.633449524487194*^9, {3.6334523293682756`*^9, 3.633452355030321*^9}}], Cell[CellGroupData[{ Cell["\<\ V\[OTilde]rratuses\[UDoubleDot]steemi lahendiks on selliste arvude hulk, mis \ rahuldab samaaegselt s\[UDoubleDot]steemi iga v\[OTilde]rratust. J\ \[ADoubleDot]relikult koosneb s\[UDoubleDot]steemi lahendite hulk s\ \[UDoubleDot]steemi k\[OTilde]ikide v\[OTilde]rratuste \[UDoubleDot]histe \ lahendite hulgast. Kui lahendame v\[OTilde]rratuses\[UDoubleDot]steemi, peame \ leidma k\[OTilde]igi v\[OTilde]rratuste lahendihulgad ja seej\[ADoubleDot]rel \ nende hulkade \[UDoubleDot]hisosa. \ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633449263451936*^9, 3.6334492814387674`*^9}, { 3.6334493513580904`*^9, 3.63344940249498*^9}, {3.6334494619778843`*^9, 3.633449471462701*^9}, 3.633449524487194*^9, {3.6334523293682756`*^9, 3.6334523736567535`*^9}}], Cell[CellGroupData[{ Cell["\<\ Kahest v\[OTilde]rratusest koosneva s\[UDoubleDot]steemi lahendamisel v\ \[OTilde]ib esineda kokku 4 v\[OTilde]imalust. Esitame need joonisel:\ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633449263451936*^9, 3.6334492814387674`*^9}, { 3.6334493513580904`*^9, 3.63344940249498*^9}, {3.6334494619778843`*^9, 3.633449471462701*^9}, 3.633449524487194*^9, {3.6334523293682756`*^9, 3.633452384670373*^9}, {3.6334525638834877`*^9, 3.633452571246701*^9}}], Cell[CellGroupData[{ Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztnU+IZEd27ov3vDBoo03hWQi1ZcQ0zVguRKkW3UaYeTSNDWonGtOLWjSk TT1hMObRfk6JAQkETZoRmNIid08LkaveOGnQYiAXvRiohdAmGWtV9LLWua3t fSczuiKj4s+JcyPj3hs38/som1bP1+dE3Bs34leRcfO890//5zef/Y+Dg4P/ +6f0/37zj1/8+t/+7R9/+w9/Qv/xv3777//7n/4n/WFG//cn9IfVn6ue6OIi 7plMVj9RzWYiGwRBEARBUDsiOLm+jnjOzuIAQ0Ey2pQWi3jbIAiCIAiCQhLu 5xCc8MiRl3PkOES2aNsgCIIgCIK8kiNHsTikbMAhCIIgCILStG84RJ72qWmv Psibz0WdlWxIkpbLLZsDQdBei+aQ6Iw0HosWQZq1hBOX0Aa1qehCvFc4NJvV 2ETKZZNct52R8EYIh9xoJLJdXkqv8NXV6icq+a0XJo3ayDOdipJCECQXcU50 cqCn7+QkPtUoW5Rz5Euq/KkXTjXCiUuIajSv7pIka9Ne4ZCQTOi3CRr20XWT BlXGpDsg4Y3IfnJMeIVp5pHcVuE7j/KkGZ9BCILkEs5IneBQ9vlNMnGppU1o 26UNrrxrU7VPOETDQLhu7g8OzefZbkSH00X0tnYy5IBDEFRX9IuGkEx6jUN5 J9W8Pe2RgEOugENp6uTJBQ5BEORVLTIBDmkBh4BDWsChNAGHvLZOcIh+KZYc f4KgHVZeMqkFCfN5nqQd4tBsJrIBhxgBh9KijUbAofRowCFTwpEJQbutDnGo zNWtVk+j1613OBR9XaXuZWxzYt8fHJK3rWQBh7w24BAEdSLgUFq0ncQh+esq Gddr4FBCNODQltGAQ6ZmM+AQBAGHEqPtJA5lXIiBQ66awKFeCzjktbWPQ5Iu QFCvJXllDDiUFg04BBzS6gqHSn5paLlcfVNZxtsKHKrbNuAQBCmphTj65YTA obRowCHgkBZwyFX22wocqtu2ujjU6w9eIYhRJ++8A4fSbIUIOOTagENpAg4l t60THJIkhaCeCjjktQGHGAGHLJt8QQQOWQIOJbcNOARBeQUc8tr2E4eExSiB Qwltk9uEOJRxlHaofcOh5TJb24BDEJRXwCGvbT9xKOOy3gQO5f3lutc4lHeU dqi9wqGWe5o3qTAaBPVXwCGvDTi0pQ04lGwDDlkCDnltwCEIyqu9wiF5NODQ ljbgULINOGQJOOS1AYcgSC6aUYULsXBZz1U+rBMcqhVtH3Do4uLi8vLS/Bvg UIKt6g6HMnahKwGHktsGHIIgoWotxGWSCdkyTlzAISPd1cFa0+n02ugncCjB Vu0uDs1mW41Jyl4gJJR894FDENSEdgCH8k5cwCGl2Wx2cKPBYGBuEO0VDrW/ TPQFh9SvIQcH8TehGBFKlQkJwKG0pMJoEFSggEPbJB2PcyYtCoeIf4iCNBGZ G0TAoYRo1Q7h0Hy+oiD1Q224/VFqPRULCcChtKTCaBBUoIBD5SQtCocIfgiB vBtEwKGEaFX/cWi5rEajDQhFi4hJVCwkAIfSkqpoJZ9Dg6CQgEPlJC0Kh6rw BhFwKCFaVTAORcf8fL4y6O2gjCOwWEjYHxzKPs6xLwT1VMChcpJ2jkNW3fDQ BhFwKCFa1UMcsraD6M/JZ4RCKhwSgEN1k0JQfwUcKidptzjknRW9G0TAoYRo Va9wSAXX20HRr85IVuGQUDIOdWIDDkE7LOBQOUkLxCGCn2+//dbaICp2Yq+A Q0lt018XRv7xuNntIEvAoQQbcAiCmpCaCadTkQ041GjS0nDo6urq5OTkxYsX 1gbR+fl1mRN7BRxKahsF+dWvqnv32tgOsgQcSrABhyCoCeXlHODQNknLwSEF QhfrTO4Joq++uixzYq+AQzXbZm0HkZkPmF3AoQQbcAiCmhBwqJykJeDQ6enV 8fEbENKyThA9fTodDq8LnNgr4JC4bYvF5nQQ/cxmkXQNCTiUYGsIh3gBh6C+ K/q7HnConKTd4tDr11eHhyePH1+4k6e1QXTv3qNPP10UOLFXwKFY2+hv6D87 3A6yBBxKsHWy7QMcgnqtYjmnfDLZKxxSH429enXBTJ6Xl5ePHj3SRPTRR+Pl MjKzd4JD0ylwyN+2y8tqMOh+O8gScCjBBhyCoFoqmXPKJ5M9waHbZ4SCkyfZ jo+Pv/zyS41Dh4cnP/644IN3gkPZv6u5WBwS7oMNh9XTpxsKIiJqbTuI0DSa CziUYAMOQVAtAYd6l7RNHDJBSMk7eZo2+vPZ2Zkmoq+/HvPnh4BDllrGocvL 6tGjDQgRnERjZpTkRlTAoSQbcAiCagk41Luk7eCQC0JK1uTptZll7o+PTxYL boNoB3BoNOolDhH5aAoiItqmxGqygEOWgEMQ1JWAQ71L2jQOhUBISU+er18H bdYG0WeffcZsEPUdh6qOKn0n4xD9mf5hV9tBloBDloBDENSVlkvR6BXagEMt JBXiUNoXBb///uqwNGOgpp6erl4u423mBhFRE7NBBBxKiFbLpns6m20oiP6y k+0gS3uFQ3lvK3AIgvKqE4DZGTIpE4eSf9n/3e+W/Ky4Piy9ess+ajs6Onrv vQeaiMbj4Aki4FBCtFq2oyMi2A0ImeV3OxdwyBJwCIK6UsmcUz6ZlIlDyWLm WP0JGj95Kttk3ZOzM9EGEXAoIZrQZm0HsWe4uhFwyBLBKnAIgjpRyZxTPpns Aw65R4kY28Tow/PnV3fvnkU3iIBDCdF4m/pou8ztIEvAoQRbVTYO0XhruqQv BDWhkjmnfDKJlrDsNQ6FzlR7bROn9fQXDx+ar5gdezeIgEMJ0UI2GpC6pkaZ 20GWgEMJtqpgHIKg/qpkzikfhyTHePqIQ/zLZZbNBSFtOz29Gg4jG0TAoYRo lo1+GR+NNttB9Odit4MsAYcSbBVwCIIaUMmcAxxKS5qs8dhfm9WS4hyyhUBI 24bD61//+qF5gmjubKjlndiFRy92Bod++OHWdlB0u7I0AYcSbBVwCIJqarFo e70GDpWQNE1Mbdbbbbh6992TBw8mscnz+v79M7JRWPM7iEaj0fL2wYKME7sw WtV/HKL/9eHDW9tBPT2tARxKsFXAIQiqo07Wa+BQCUnrSlKbtTLOCPFTMYEQ 8Y9pm81m9A9DG0TAoVrR6HccvR304Yf92w6yBBxKsFXAIQiqo5K/Rxo41GhS ueS1Wc0zQqGpWIOQZVsul6PRKLRBBBySRFOfA+rtIDIUvh1EzZO80QYcSrBV wCEIqiPgUFo0msblVUv6i0O1arNaZ4TcqdgCIdc2n89DG0TAIT6auR1EP7NZ PEIJyngj5NGAQ80lBQ5B/ZWqTFQmwJSMQ7WKuPUIh+hXdbXo1KrN6j0sbU7F XhBybb///e9/8YtfeDeIgEPeaGp3xdwOijJDUQIOJUcDDkFQXpUMMMChbdqW gEOTdeGqn36qUZuVeWvsZr0OgpBpe/XqgqIRXIU2iIBDlr76qrpzp3/bQZaA Q8nRgEMQlFclAwxwaJu2JeDQ8+dXb7118vKlqDbr+XmkHefn13fvnkVtz55d UDSCK/WfoRNEwCFtmE57vB1kCTiUHA04BEF5VTLAAIe2aVstHFKfeRGZ8IuO qs364MGEnxXVR2NPnkRsFxcXBDxffXVp2bwbRMChy8tqMNiAEEFRtP3lCziU HA04BEF5VTLAAIe2aZschwaDgfpoTH1Y5l109BkhflY0zwgxU7ECIZ3Usnk3 iPYWh6ztICIi4qKdEXAoORpwCILySo3e6LuutWzAIcvWPg7JWcgsh+HFIeuw dGhWdA9Le6diE4QY2w8//HB4eGhuEO0hDlHe3dsOsgQcSo4GHIKgvOrkWQAO pSVteqqxcMj71pg7EkJvjVlTsQtCXpuK9s0331gbRL/73XJ/cOjsbAe3gw6g PVPu8YOffflpTp13DT8t/yRL4xDz+ryJHMzr85Wx+odAyLJZ0cwTRKSzs9nO 4xAlGg4395H8O7Md1N2aDHWj3OMHP/vy05w67xp+Wv7ZRrT+Hh1dHR1xr8+r 1X84vB4OudfnVbTHjzkQ0jZvNOsE0f37Z6enV7uKQ7PZ5g4eHa2+U3GX1N2a DHWj3OMHP/vy05w67xp+Wv7ZRqro6p07E371Xy5Xr88/fBhZ/tWOULTSqy7h GjpxbW4QPXw42zEcUl+Cqm+fpFxF79Tdmgx1o9zjBz/78tOcOu8aflr+SZZZ dJVZ/dWHWefnE3711x+N8cghqfRKGT///HM9zRKG6a8nCrSwNzg0n29qatAf dmw7iJFC3Kubaxq6ETQsTFvoRgijJdiYsSS0mV1gBklytJCNHlL1fkQWW92k TUjyqXH7r1pkn20ynvAvPCkEFSi36Kp30TFP9fAT+4Hx0Vjo0RBWelW277// 3twgevGC+/Ll8nHo6dPq2bMNwe7kdpDWbHardxaTKLk3wmtzb8Q20SQ271gS 2iyWqwKDZMtors1iki1taUmzK/uyXma0WkmBQxCUUaGiq9ai4x6WDk3sB84Z Id9nQ6JKr2a5NGrAeDzWODQcnl2F6aRkHJrPNzU1KKZRnHY3ZV5hL5PUsk2n mxuxfTSJzRpLQptLEaZND5Is0Uybl0mSbdskzS7gkJsUOARBWcQXXdWLTuit MXdid0FIR9OPhrDSq7du7GKxMDeIZuHqXAXi0HJZjUab7SD6801N2h2XusL/ /d+XoeFh2nTFOsZGN+Lly7hNGC1q02NJaDs/91OEaaO8DKSZbZNEUzaGSYS2 vEmzCzjkJgUOQVCyaHzSQJUUXaVF5+efl8zr8+bELlnphJVelc0bzdkgGkZn 7BJwaLG4dTpo57eDLD1/vipsRyzB26yKdYztrbdOfvopbhNGi9rotj5+LLI9 eDARRnv3XQ6ElJ48EUWjpHfvni2X3AgW2vImzS7gkJsUOARByVJrU7Saqirh +vw5Z1MTOw9CdZNG183FYvFnf3YvukFUAg7Rf47H+7gdpKXr3/FXWO2T0N0X 2vgbUTda1HZ8fHJ6GrER5EtsOhq/oKhPqaJtI9tweDYcXueyZUzahIBDbtJi cYimPuAQVLIGg0G0mqpawsgWXXQO1q/P84+GjiZJKlk3Kelf//VnGofOzvwn iLrFIXM7iH7Cn+ntrMzPOpkrbH5gJLeFbkRatKiNH0v6gA1vs6KFnhrzuA7T Nn1cJ9o2oS1j0uYEHHKTlolDXY0QCBJqud6bYMa8eaqHX3TUjhD/aFjR+KSS dVNvQ33xxeLwMHKCqBMcogv80UcbCqKw0dJaOyldCFjJe4XdkzNym3sjtokW tYXGknXSOGTzRnOfGvfcsrdt1rllpm1CW8akTQs45CYFDkFQsrxj3j3eHFp0 zI/GQo+GN1ooqWTdtD6POz+//uijsblBdOmU8moZh7AdpOUerLWucOgIsdxm 3ojto0Vt7ljyvnLl2pho5lMTeoHLapv3BS5v24S2jEnbEXDITVoyDknaBkEd yhrzofe83EXHPSPkjnkmmps0WsKVqfT66aeL4+PNBtF3332XPGNvg0P0r6ZT bAdFpK+wuqGLwBdNmjbmtSY9MqM2YbSozRxLIYqwbNFo6hFhopltY95kt9om tGVJOh57AzQo4JCbFDgEQcnSY5554b26veiEDkubYz4azUwaLeEarfQ6HF5/ /fVmg2gwGFgbRE3jEGUbDLAdJNJEXLGObES5/CtXZLt37+LoKG4TRova1Fh6 8GAisQmjrc/mxdtGSYdD7k123TahTXJBJNE6eSkAOOQmBQ5BULJoiJ6eXtGs GC26qkq4MkuYGvPrN33i0VRSyYIoWTcp2l/+5Qcff/yxJqLpdBr9ft1QNDkO vX59azuIiMj5mA66JVX/Llqxju442aKVeZWNRia/C1crWtR2fr569zxqe/Xq QmL74Yc52eip4UzrjaP791cvcEXbdveuyCZpmzBpVwIOuUmBQxCUJrU2hcqk Wjb6HZxfdF6/Xr0XT7/nSpJKFsQDQaVXHW25vCYECm0QZZ+gXryo3n57A0IE RWUuGeVI7wTyV1h/riS3MYe4EqJFbTTO+bGUYGNWCv0pFd82ZaOngE+qPhpT SUejDEnHDXxItv5srgOWKDNaraTAIQiqK7U2zedzfsybSxiz6ChbtISrfEGU V3o1bcQ/REHeDaKME9Rshu2gerI+Eg1d4eSiq70r4eravE+NdVwn1Lbkoqtb Jo1+upesjOu10AYcajQpcAgqU8K1ybV5Fx3zjBAz5uULorzSq2ujOdzcIHr0 6NEf/vAH5dl+gqK+099jO4jXYnHrsnjPhrlXeMuiqz0q4RqyWU+N99yy27Yt i64mJ20OhEJJm7YBh5KT0q+EwCGodxKuTSGbtei4h6W9Y37LpHVtoQ2ibSYo czuILkLgRSjo1hVmDsmbVzhL0dVelHDlbfqpYV7gMtuWpehqQtKmQchN2o4N OJRmo7FATx9wCOqRhGsTb9OLTuitMWvMZ0la1/b69ev33nvPPUGUMEFZ20Hj MbaDOOkrzNSYU1JXOEs11epmZGYs4RqNpnuasdIr5Y0WglddkNdmzZu0HRAy kwKHEpIChyAoJP5N9upmzEuWMBr2P/3EvTWmx3zGpAk27wZRrQnqb/8W20G1 RRf29DRzbdZOSrhGo12LS7jKK73evx8vBP/kibQ2a96kkuuWV8Ch5KTAIQhy pV65iq5NwvLiwhKutCBSUmEJ14xtM23WCSK1QSSZoJbL1bs22A5KEA224+PV +338Fc5eTfWkgRKu0Wi1arPyNl3/lF8p1B7O+Xm86GrepJLr1oSAQ8lJy8Qh mlrJNp/H2wZB2UVI8MUXC34wX8nKpF7JSrjqBZF/NGolTba5G0T8C8j0nOqa Gh9+iO2gGlK3gK5wxc6fDVVTrcKH/JuLxi928kqvZv3T0FNjfpjFdEFYN1ae VHLdmhNwKDkp/ULXZlKFQ7Fff1c4hF8toQ7FDGbzw6yoLVrCVUfj59haSbe0 uRtEP/64cCcoazuI/tzJl+v2V3QXFAgpee9Xo9VUq8DIbDRaaLGTV3p165+6 T417qsfbBWHdWHlSyXVrWl3hUK6tlQ5xSBItY9uEOARB3co7mN1TPYwtWsLV ihaaUmolzWV78eLF22+/rYno66/Hw+HmswZzOwi7uLlk3YgWqqlWzshsIZq7 7sgrvYbqn5pPTeh4s9UFYd1YeVLJdWtHJeMQ/dLUaxzK2zbgENQLWYM5dLzZ azN/5dc2c5nwRnOnlFpJc9luvuz3tblBdHx88umni+Gw+vprbAc1JX0jWqum Whkjs7Vo5oIir/TK1z+d3JRwZd7z0l0Q1o2VJ+UvSK9rswptQhzqBDmENuAQ BIWkBzP/npfcppYJxmZOKbmS1rJZaxP9gZYDTURvvTU+OLjGdlBzmuQrk1rL lreEa65o13WqqT55EnnhXSUV1o2VJ42+Pt/32qxCG3AoLSlwCOqFJuIyqUJb rRKuuZLKK716l4kXL2YHG538/d8v2vrqlL1T3jKptWx5S7jmiiavpkq28/PI 4jSZTPImldSN7UrAoQQbcAiCvLqSlUmtZROWcH32LPJs5G1baG1aLNTpoKuD g80G0Xg8LrQ4d5+lN+X4+bM5W94SrttHk1dT1TZmIdYfZmVJOp1OTwR1Y6mn 7ifm24taJdmYBQ4l2IBDEGRJf67ED+YEW7SE66tXF/yUkrdt3rVpfWRiczqI /v6bb/7fZnvo5GSBt+jzyfp0MnS/mrblLeG6TTR5NVXL5n1qrFM9tZK6MrvA JOXPVm0jIXJUuXFIDgnAobpJgUNQmbIO2IQGc7KNKeGqbMyUkrdt3rXpj39c FRPUIDSbvYn28uVL8wQRNojSZNVm9S6a7v1qx5a3hGtaNHk1Va/Nemq8x5vl Sa1obheEtrzqBIdqQQJwqG5S4BBUmrwnjd3BvKXNW8LVtHmnlLxt807sT59u KIiIyD3vPZvNsEG0jcwbwSyaXdnylnCtG01eTZWx6aeGec9LnlRHC3VBaMsr 4JAr4BAE5RLzypU5mLPYrBKurs2aUvK2zZ2xLy9vbQdNpyunN5r1ihk2iOpK 3YiMRVeFNrq/ktqsLZdw1dHk1VSjtsmEA6G6ScnJE47QllfAIVfAIQjaXvy7 59XNYM5YJlWXcA3Z9JQibNvPP6eUPqcsRD7mdtC6ZH0kqblBdOfOHWwQ1VL2 oqt5a7O2XMK1qlNNVWh79904kwiTPn58EY0mtOUVcMgVcAiCttR3300bqn/K 2GiZoN+aGc91nRKu0WiVs4TRo0ePp7UdVAnIUHmGwyE2iOrqopmiq0KbsDZr myVc5dVUVZnUqE0VXeUXYmHSi5u6sXw0oS27gEOugEMQtI3m88govWqmTGre Eq61lrDZzLMdVMlAqFqXMDtbyzxBNMdXMbIyP0ZhJsZGbcLarO2UcJVXUzXL pDK2E6PoauipESbVXeCjCW0NCTjkKvvLce3jEE3OENSVmFFq4kF2W94SrpIl 7Pnz6u7dDQiNx5t21gIhVXzNOkE0Go2WKNHhE10W6zyJd5C4x06y24S1WZsu 4SqvpuqWSfXarA9/vU+NMKnVhVA0oa1RAYdctb/tk/0uQFCH8o5SFw+y2/KW cOWXMHM7iJzmSZ8EENKazWb0b7FBxCtaPDR0/ja7TVibdTBoKqm8mmqoTKpl c5O6T40wqbcLbjShrQUBh1wBhyBoG1mjNIQH2W15S7h6V7rl8tbpIHM7iIlm yQtCSsvlcjQaYYOorvQg4V9Eym7LW5u1VlJ5NVW+TKq2hZKaT40wKdMFM1rU 1vKRD+CQK+AQBG0jPUp5PMhuy1vC1Vrp5nNVU8OzHRSNZjQgCEJa8/n86OgI G0S1NKlTdJUu7KU+3bVdtLy1WYW2O3cmp6eiaqqSMqnCoqvCEq7CurHrs3kR W/sCDrkCDkHQNprkrn/aSQlXtdL9/PPVaLTZDqI/Rz+2C6SOg5CK9uGHHz58 +BAbRHJdiOuf0vVMrjHnteWtzRq10fi5f//s+PiaT6pswjKpwqKr0RKuwi68 enVRbG1W4JAr4BAEJeuqgdqseUu40u+5nOlmYv+LvyC42mwHuZs02UGIoinb fD7HCSKJ9N4dPzEqELpIqjHH2/LWZmVs+lMqGm5MUm2LRju5KZPK2waDQbSE a62eRmuz8ht3yVp/INj2QgwcSrYBh6BeS+MBP0qbs0VLuK6/LzcysR8fn/zz P1+Z20Hu3kxzIKSEE0SmrGJkStaxk9Ag0SAUtQmjWba8tVm9Nuu4TgiHLBsT TSdllifX5h3FCT2NRmtiqHe1EAOHkm3AIainsvAgNEqbtjElXBVs8FPxr361 +uxDUdC9e57tIDdpSMkgpGVuEB0dHe3tBpF7973nb702E4S2j+a15a3Natm8 55ZdHPLavNGspN7lKWSzBmlyT+XRMqrWQux+IO4KONRcUuAQ1FN58cAdpe3Y vCVcTdjwPmivXl288w6BxxsQIoP319PWQEgJG0RK5t1nFk3L5oLQNtEYW97a rNrGvMBl4hBjs6J5k1rLE2/TQ3XLnsqjZVQnkCC0AYe8NuAQ1CMxeGCO0jZt VglXFzasB+3771flnzQIhb68tGUQUqJ0v/zlL/GKmbr78qKrIRDSNlV0lX+5 TJ40b23Ws1j90+oGh54/j9h0NCapXp4ktomgmqqkp/JoGQUcSrNVwCEIYhXF AzVKM9ZmFdp0CdcQbKgH7fy8+uwzWhDfgBD9DX/iqH0QuvmOI2wQ1ShsSpco WthO2eqWomNsGWuzSuqfrqNNDg/PXr+O2ChaNOn1ujarxCaspirpqTxaRu0b Do1GIhtwCIK20Xg8juJB9tqs8hKu9Fsz4/njH6u3396AEFPLplsQ0n9jvWI2 26fqOxfiwqZ0caKF7bStzWqqwmjyoqtke/XqOlrCVZhUlUmN9lRYdFV43Tqs zbo/OJRrE6kCDkFQQF3VZpXY6Nfh0DJB/3Y6rQ4OLtZYcfX0aaTSawkgpGRt EFHGNn+n7krm1WBmPPOMkNzWTjVVYbS6RVer8Jtl1e3DP3y0E6NMarSn/PJU 97rJF7uMAg6lJa2KxyHr63AhqB3xg9mkCOYJasKmYMO7Nl1ers6K3IDQBUER o6JAyDJoItrtDSL3anjvvntYWm5rupqqMFpa0dUqgEPuKehQNNMWeqKtLoSW p7TrBhzapm3AIQgqQaHB7FKE9wmqZTOPDTM2EzbMtelmO+gNCH388QX/1W5l gpDSq1ev3nnnnX3YIBqNRm7XrLsfemtMbhMWXbWihWwJ0bYpulo5OBR6HcyN 5trcJ9rbBXd52ua6AYe2aRtwCIJKEI3S0ejWYA5RhPUE1bK5FCG3rY9Sq+2g NyD05Zfxr7MuFoS0bbFY7PwGkf7ey/DPmy2+fLbNS4Vt2SbEswcH1/lswqTt 91Rkyz2EoP1S5gGEUbSXSh4qmkx4ikizhShCaDs7M6figxcvIoTTCxDSbRiP x/r27d4GUT7CEdoAQp1fkOxDCNovZR5AGEV7qW1Gy6SZ2qw8RfA24gILhKLv oPUIhLR2eIMoE+EIbQChzi/I6if3EIL2S5kHEEbRXmqb0XLVQNHVBw8myTYi Aj273rsX+f49Ha13IKSbZG4QnRIg7sQGUQ7CEdpKBqGT/QAhstEYzj6EoP1S 5gGEUbSXSh4qmiL4Y3W1bJOVUmy3t4PUFyruMghp/fjjj4eHh/pu7tIGkSmm xEaaLeMtENqY2hmWTRhNYptOp+33NK8tTaFpRF6sVt8soY1PKrGZF4Q5OSws pOt2QRgtV0+ZpFZPt4zWieSPcy6bWoayR+NDCde+Wkmj0WrZciVNlkURocFc y6ZbG7JZndK2+Xx1WFpREP3h++/3BYRU0vPz890+QQQQSrOVTDgtVOJwpxF5 sVrrZgltoaQSm3tBvKu/sJBuqAvCaLl66k3qvfVp0eh/7aRE0c6AUC6K6DsI qfeSeE/oH7oU4Q7mWjarta7N26lvvqn+6q8220Hjcbw0FdM2V+WDkE66qyeI AEJptpIJpwUQUjKnEXmxWu/NEtrcpBJb6IJYq7+wkC7fBWG0XD21kjK3vm40 4c5GdgGEkpMWC0ISGKj1D83BzNjM9/EZijCjeTtlbQdRKuGCuHsgpBu8YxtE hYPQAVvpVQkglGbLpUnNYrXMzRLazKQSm7CmLX/rTVu0C8JouXqqk0ZvvTza umaNCA/yCiCUnLRkEErYOohSxERQTVU/aMrGtFZFWy7tTi2XK6DS20H/+q+r v9lzENKyNoim02nL00UulQ9C0aQAoTRbXtUqVstXyFU2SSFdcb1dUU1bShqt aats9+9H14ga0XL19FpcllcSjf5X8kR7ml0AoeSkJYNQ2lGi776bRud/STVV 6sfp6cpGvwLw0Yj/adibNvWNu3o7SH1cXDgIZVysJUmp/Z9//rnGocFgEN2+ KE0AoTRbyYTTCQhNsharJdtwePbsmaiQbrTe7oW4eu8nnwyiNW1V24bD66hN UiFXR8vVU2FSSbTxeCzpaV4BhJKT7h4IVZXaXI3Hl1RTpUeDfu/gbapT9JuC stHPeLzZDhqNVttBFUAoYHvx4gVRUB83iOQ3FCBkta3vtryaZC1Wa95TPprE Zl4QSTTvOeQEm9lTYbRcPRUm5aMJe5pX7YNQXhtAyNKWIFTFXmw0YYMZzLoZ /INmdor+36efVsfHGxDSbw8AhLw2lZS6QwjUuw2ii7V4j/CGAoR6ZMsr97p5 JyXLFpqU3HsaiiaxuRdEEi00/cptbk+F0XL1VJhUfkFaeEekWMIR2vJSBNkA Qjfp/IPZXZu8g9lqRuhBMztlbQeRWU8h+wZC0SNe3p4S//R0gygkgJDbtr7b 8oqeFG9Sa1Ly2txJKXRPrWhCW+iCSKK506/cFuqpMFqungqTCi9I0yqWcIS2 7CCUPVpPQegmqT2YQ2uTNZgDbz/ZD5rZqcViczqIfkwW2DcQ2qan1gbRo0eP erFB5BVAyG1b323ZRbdgqT5Bd6QnJaZt5qTE31MdTWjjL4gkmjn9ym18T4XR hG0TXt5oUuEFaU7FEo7QBhBybRlB6CbmZjDza5MezExrVbTx+E1rlY3+cjr1 bwdVAKEkG/HPJ5980usNIoCQ27a+29oXPcGPH69O8zJtU5PSgwerI8T8PaVo Qls0qTCaatv6IGXc9uxZ5C7UiiZsm/DyRpNW4svbhObzeYGEI7eNx2OAUF1b gtRgfv48vjZR8uHwmgYz04xr41sjyHZ5WQ0G/u2gCiCUaqOeDofDp0+f9u4E kRJAyG1b322diNr27rur15r423V+vnq/m+Yu3kY36/79uE2YVBhNtY0mTM5U rb686PBw9aoabxNGE14QlVR4eaNJhRekE5UMQtlP9QCEGL1+vXovnn7viDaD BnO06Kr61ojf/GZibgcREVlrNUAozWb2tI8niABCbtv6bmuOlNYb0f7/SbeN eb+jurmn6y83i9vWB0o5W62k0Whm25g5SSWlWZq3CaMJL4iZdPsuCC9IJ8r+ 1AOEuk2aLLU20a8A/GDWzeAHs7L99reTO3c2IERQZPkBQmk2t6fXvXrFDCDk tq3vNtVT3pOs2cw/21htC01K5j11DzR6bUy0hKS12uadmcykjE0YTXhB3KTb dEF4QToRQCg5WplJk2WuTcxgtpoRGsw3fZ9oCvq7v7O3gyqAUKqN6WkvNogA Qm7b+m4T9nQbubONt22uzb2n3mXde+szJq3VNuvhdpN6bcJowgsSSprWBeEF mc1m7U9ZAKHkaGUmTZa7NnkHs7cZ7mAm2+np6hM0ZjuoAgil2qI9LXyDCCDk tq3vthZA6CbRZrZh2mbaQvfUWtaZW58xaa226Uc8lNSyCaMJLwiftG4Xtrwg jQoglByt2KST1btatUdRaG2yBjPTDHMwk+3hw7ODg4muqeFdh0sGocVi0V8Q 0tE++OCDjz/+WBPReDwuYYOoExAiFAQINWdrDYRu0q1mG77+qbblrc0aTToe 14iWpf6ptvGjt5Yt2lPhdRMmrWQXpCEJn3r5swAQKiFp2sYRrZKhZUIP5mh8 NZh//nl1WFqDEM0M3mtQMgjlXay7AiEVzdogor8kzOP/baPqBISESQFCabaW QUhJUv+0EtcYFVYslRddbbn+6XWdEq4SGyXN1VNh0kpc+javAELJ0UpO2tAn aNSP4XD11lg0PtkODt6A0MlJFVp1AUJptrogZP4N/cPON4gAQpZKJpySQUi1 TVL/9ExQFXQiq1gqT9pJ/VNhCVeJTSfN1VNh2yQXJK8AQsnRSk66JQgx7b1e fYPN6vAPk2G5pF+aNiAU2g6qAEKptmQQ0prNZhqHjo+PW94gkl9bal60bQCh HtnyykzKvIVk3lOJzXskODkpH03YNp3Ue3QzlHRLm5U0V0+FbVv/OfhLdF7t FQhFf/8FCCnN58HBrOMzg5n++fHxGxBitoMqgFCqbXsQ0oZONohqgVDLt0A4 O83nc4BQgi2vlsulldTLEu49ldhCy7rb022iCdtmJQ1Nv96kyTZv0lw9Fbat He0VCHViK7MLEnmfRyu+O5iXy2o0qg4O3oAQ/TlQL2glgFCaLRcIadv777/f 5gmi63W9mF6DUN4PjEpGl5JBSMm9WdbcFbqnEpu7rId6mhZN2DZvUnf6ZZIm 2JikuXoqbFvTury8BAg1aiuzC3JZz6M3vjmY53NVYnUFQnfuTOg/GdUCoTkf CyC0ddKWN4hCJTW1AEK7Z2tTeu7i76lpGwwGXpu5rPM9lSQ1ownbxiQ1p99o 0lq2aNJcPRW2rXMBhJJtZXahrvTzyMS/Xh2lrh4/Vl8ctAKhhw8n/FpXC4Ry 9R0gFLWZJ4ha2CAKCSC0e7b2NRFXUyWbpMZo3qKruSq9Xtcpupq30muungrb 1qEAQsm2MruQpkms6CotmMfHb0Do8PDsX/4l50oNENJqGoT033dygkgLILR7 tk40kZX7JJukmqqwFKkwqbD+6UWd8rLCoqt5K73m6qmwbZ0IIJRsK7MLyboO F12lvxmPdWWx6z//87PnzwFC9aIVBUJaXW0QAYR2z9aJ9D1lXsuqjJvF21RP haVIJUnPxPVPo20zozHTg9Bm9lQYbfueCtvWiQBCybYyu5AsHV89j+YnX7Q8 rk8HvQGhhw8zr9QAIa2WQUjp5cuXh4eHbW4QAYR2z9aJrHsaYgnrZoVsZk/d I8EJSbWNiWZdXnk07yQhtLk9FUbbpqfCtnUigFCyrcwubCm9mlAegh8aF7e3 g1afoJ2eAoRqRysZhHRPzQ0iagb/r7YRQGj3bJ3Ie09dlvDeLNfm9tS7rMuT WjZvNO/llUezpgqhLdRTYbS0ngrb1okAQsm2MruQV5Ttgw+qR482IPTiRf6V GiCk1S0I6X+lThA1V84VILR7tk7E3FOTJZibZdpCPbWWdXlSr82KxlxeeTQ9 YQhtfE+F0eQ9rdW2TlQ4CI3HYz4UQKhRUf+m0w0F0XB9/RogZNu6+sakhkBI q7kjQwCh3bN1ovl8zt/TyU25T74LE0HRVb2sZyy6Gk1aK9pEXJuVv6e1omVv WycqHITKhI2S25ZXl5fVYLABoe++q9ZH3QBCt2y7CkLNCSC0e7audL0W73ny ZCIp4dpV0dW85WWFRVfzVnrN2LauqkaPRiOAUIKtk7Y1enLDK70jREREXNTE Sg0Q0toTEKrWL6wBhHbJVrLUzYpWU1U97aroapZok5pFV3mbMJr8gkiilSyA UNNtIxzNkrQJUUKiICKia/Z7F00BhNKS7g8ISQQQ6pGtZJk3i3lL3ewpY9MD iXlDqro93iRJs0Sz2haaSKykIZswWt0LEm3blBabIgUQarptuS5I0wIIuTaA UEMCCPXIVrLcm+VlCbenXps1kEKrvzveJEm3jOZtmzudeJO6NmG0tAsibFtR UgOp7yCU9+j1foIQCSBk2QBCDQkg1CNbyQrdLIslQj21bN6B5K7+ofEmSZoc jWmbOakwSU2bMNo2F0TYtkIkfOoLB6EdiFYCCFXG1w2FBBBKSwoQMgUQ6pGt ZPE3S7ME31NtYwaSufrz402SNCFatG1qaokmVTZhtO0viLBtnQsgVEi0QkAo qr0CoYxMAhAyBRDqka1kSW7WRFD/VNk6KboqLy8raZuw6GreSq+52tahAEKF RAMIbR+tCRDKtVgDhEwBhHpkK1zj8VjSU0n900l3RVcl5WUlbatVdDVXpVdh F4Rt60qSgQQQSohWrb/BACDECCCUFu3y8rLXIFTJvtwDIFSCbQeke8q8llUZ A0lia6Lo6vZtU0lrFV3lbYPBoFZB2O3bVrIAQgnRqqwXpBxdrMV7AEKW8oKQ 8PxS31c6gFAJth2Q1VMvS9D4sX5vDSGHOd5CL1IJk8qjWYM8FM1M6h5XZpKG bGnRvG2bz+dmtK6+X3EbAYQSolU7CkISAYQsAYQSBBAqwbYD8vbUYonQPOwi hzvevKu/JKk8mneQu9HcpF6AcaMtl6ti3K4tLVqoC30fbwChhGjVHoMQCSBk CiCUJsn2I0CoUdsOiOmpZgl+HjaRIzTerNVfklQejRnkZrRQUgtgQtHo35k4 FHoWhNHcLvR9vAGEEqJV+w1C1XpZ5w0AobRo+wNCEgGEGrXtgBaLBd9Tei6H w+vhMDIPTzoquhq16WiS8rKTWJlUjUP8syCMZnah7+MNIJQQrdp7EJJoNpsB hOpGAwiZog4ChJqz7Yau1mIMNH7u3z8rueiqpG3y8rLRMql0te7cmeQt4Sq5 ICXr8vISIFQ3WiUGyH0GIYkAQm7b5F/2uCcrXVQAIdcmGUV7Ij35S+qfSmwX zRRdjSY9qVNelp+QyHZ0dHJ01GoJ1x3QRFCwo2R06QqEhLZ91ng8LhOElsul JGm1vsuSMbNYLCTRJEXedQsltn1QdFugAgjtq6zJn3lL3ZyuGZu+C8yLVPJo 2sZHM2+9PFpoWtLPgnV2KDmaaYvVxeqxJHNIyegCEOq7ptOpZGKXfIlNtWYS 4XYKdl12RjSESkYXgFBD8k7+XpZwp2uvzboLIYARRrNsoWjurZdHcxc0a0EP 4ZA8mmXb1V/RJHNIyegCEIIgSLJxVDjhAIQSFJr8FUsY/1lW0dVo0lrRzGXN u7Ph4pA82v4sc5I5ZD6fl4kuACEIgoSSvNovPKalPmAVHkiL2tQXj0uSAoQs LRaL0Dx8ebn582w2C9loWdBfFTgYDLx3wQQYfvKfiIuu5i0vqxY36mYomolD wmg03rDMuYpeELpu0+lUEoduRDQaGei2RqPRgyC5WWSTgJDwfRbhWXQIgvoo 4TEt4QwgjJbXBmUX3e3xePXxUHT9oqXmb/5mKils+vRpnKhpUf322ym/4qho //mfka8dUDj0H/8R2dlQ0QTLLwRBEARBkF//9V/L6OvzhBzzuSjaKlZ894Bs 11FUpv99HSweDb/rQxAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAE QRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQVD7+v+aed7B "], {{0, 173}, {772, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], BaseStyle->"ImageGraphics", ImageSizeRaw->{772, 173}, PlotRange->{{0, 772}, {0, 173}}]], "Text", CellChangeTimes->{3.633452988157433*^9}], Cell[CellGroupData[{ Cell["\<\ Piirkond, milles olevad punktid rahuldavad \[UDoubleDot]hte v\[OTilde]rratust \ kahest, on \[UDoubleDot]hekordse viirutusega. Piirkond, milles olevad punktid \ ei ole kummagi v\[OTilde]rratuse lahendid, on viirutamata. Piirkond, mille \ punktid on s\[UDoubleDot]steemi lahendid, on viirutatud kahekordselt. \ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633449263451936*^9, 3.6334492814387674`*^9}, { 3.6334493513580904`*^9, 3.63344940249498*^9}, {3.6334494619778843`*^9, 3.633449471462701*^9}, 3.633449524487194*^9, {3.6334523293682756`*^9, 3.633452384670373*^9}, {3.6334525638834877`*^9, 3.633452571246701*^9}, 3.6334526159875793`*^9, 3.6334526473280344`*^9, 3.6334537310151377`*^9}], Cell[CellGroupData[{ Cell[TextData[{ "Kahest v\[OTilde]rratusest koosneva s\[UDoubleDot]steemi lahendihulgaks v\ \[OTilde]ib olla nurk, riba, pooltasand v\[OTilde]i t\[UDoubleDot]hi hulk. \ Viimasel juhul on v\[OTilde]rratused ", StyleBox["vastuolulised", FontSlant->"Italic"], ". Kolmandal juhul on \[UDoubleDot]ks v\[OTilde]rratus ", StyleBox["liigne", FontSlant->"Italic"], "." }], "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633449263451936*^9, 3.6334492814387674`*^9}, { 3.6334493513580904`*^9, 3.63344940249498*^9}, {3.6334494619778843`*^9, 3.633449471462701*^9}, 3.633449524487194*^9, {3.6334523293682756`*^9, 3.633452384670373*^9}, {3.6334525638834877`*^9, 3.633452571246701*^9}, 3.6334526159875793`*^9, 3.6334526473280344`*^9, 3.6334537310151377`*^9}], Cell[CellGroupData[{ Cell["\<\ Kui meil on rohkem v\[OTilde]rratusi, siis leitakse s\[UDoubleDot]steemi \ lahendeid samal viisil kui kahe v\[OTilde]rratusega v\[OTilde]rratuses\ \[UDoubleDot]steemi korral. Lahendihulga kuju v\[OTilde]ib olla aga \ keerulisem. N\[ADoubleDot]iteks, kolmest lineaarv\[OTilde]rratusest koosneva \ s\[UDoubleDot]steemi lahendihulk v\[OTilde]ib moodustada j\[ADoubleDot]rgmisi \ kujundeid: \ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633449263451936*^9, 3.6334492814387674`*^9}, { 3.6334493513580904`*^9, 3.63344940249498*^9}, {3.6334494619778843`*^9, 3.633449471462701*^9}, 3.633449524487194*^9, {3.6334523293682756`*^9, 3.633452384670373*^9}, {3.6334525638834877`*^9, 3.633452571246701*^9}, { 3.6334526159875793`*^9, 3.633452624302394*^9}, {3.6334527272937746`*^9, 3.633452744500605*^9}}], Cell[CellGroupData[{ Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztnV+IHEea4JO7fTiYl30R6MHsYhA7CCE1pmmaMZjlDjHMwlp/9vCDBQLN 0D30y3JId63zshY7xpSYh8F66AZxmoGlBps+2G0bRuCjdOc1gmrwGExZpzm4 tvywsy2B95YS9uxtS7Il936dofoUnZmVGZWdlRmZ+fvhERp1dFZWd1TGL774 4ovnf/Sf/uzH/yYIgv/87+SPP/vhf/33Fy788C/+4+/J//kPf/FfFn/0b+Uv 9+V//0Pa7P59BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAimM4 HFZ9CwAAAOAXW1tbCyFV3wgAAAD4xcrKShCyvr5e9b1AlF6vt729XfVdAABA S5ExaG5uTiRB/mTRwSsGg4H5vWxublZ9LwAA0FL6/b4JJiwvL1d9L/AUlTdh a2ur6tsBAICacfLkSRnWO53OeohMPGXKmS8aINcx41Gv1yv8PiEH8mtlGQgA APIhPhCMRyahyyHGH/r9vrRPmZCKWuiiA4vglWMWGgQSSgEAIAcy4hsNSFGF cZhv7Ha74g+9Xm8zRP5ivipz2KrfXKtRYWOhAQAACkFGFhnoZQZqQgdGA3Ss mZSVlRVzHeMPxBbKhKUfAAAoDRnizVhvxv1OpyPD0MmTJycUh3mTAqFLGPtJ gYBxaDyHJFIAAKgcXWuQcX9lZWVhYSHJEBaD4EEQnBonECYFYmnpqlnCyEyB gETszBDsCwAAPESDDCZd4b33Pj106JvXX/911hLGahDshDoRxXyjWcLQFIiq 36WPsNAAAACeo/smxBbu3Hk4N7fT70fbRFIgzpy5Lobw0ktvZ61ZiEi8a/// hYUFexdnm1Mg5O2rU1V9LwAAAGPpdrtmleH557+OG0IEaSCGoM0SUyDCVYzV cM0iIdSwl0XTplUpEFtbW+bNs9AAAD6zsLDjEulcWXFqBjVFBvpw0WEoI3t6 akHEEFKazc3JUBhNgYjt4jTJD5fTNeLo0TfsXZwNSIHQVBBxoarvBQAgGRn6 RRIyY70uzeSr0sblgcfqtJ+41POR3+9EhpDOxx9/cfTok6tXP5dxX0b/8SkQ q+lZlLVLgdCFBipUAIC3FG4I7ldLRy5CYdpKSK8MLIN+YrpCBEdDSL+apkB0 OoNDh765ePGXWbs4F4Pg0/i/RgpZ+5ACYS80tDMZAwAqxHF5s0JDcLmatITy sc8YiiyUuxtCEOzXEOyrxX0jkgKxsrKytHT1wIGHQbCRumQRRLIoI4Wsy0mB GC3r7MJCAwCUjIytLonSGAKMQxcd7JT7iQwhs9k0IhLaZ+wUCF3CGBnCTvhn OpeDYD7YW8i6wBSIUYLobonL/V8NAMCdYod+DKG1RDbvF2sIMnueniGk39t7 792XsV5G/PGFrJ22Y5w7dyFfCoS91ZSFBgAoE2+DAxO9qIshrK9nvyLsB7sM 4O3bX7qM6e4JjQXmPU5kCOkvKm95be2LI0ceX7v2YVYh67RalCkpEPZCg+d5 lQDQMNpjCI4vCvtkdKDA4nPPPSpw+cBPQ0h/UTsFQhTiD/7g6zNnro+pZW1H JD4b9zVRhcZXgQAAf8AQYBosLV0Np8yr6fl1zTaE+ItGrhZPgQhrUbqUkNpD PAWCaAMA7B8MAabEnTv3TI2jlJ16LTeE9KttbW2ZXZyarGh+mBPJQzAqZF3r ylFK/O2bd6ecP/+GLtbYbMYgCAOQiTwnT57EEJ7R7bruAAUXtOZPYio+huB4 tXj1CVMFYqKzvJsRWMgSooyzR0dsjCvRuRzD5JeiHNBC5Dnp8nxrjyEQapgG uvgeGaQmGjcz6wE02BBc6ljaaAqEXcja8Xv9xx6pdYOqYWnp6sGDjw4f/oWD Idw121RTSUsLsVhM2RWr97aw0J1IOdi6AtNGumL60bGFG8LyMoYACSTu2iu2 0EFVhlBCSQe7OFUz1gumRMrPWa1JuHTpq1deeXjr1ufGoMYpx5kz18U3xDqy FndM4CKzdIapsHHRodm7476mlbteeeV/nT+/5yASG91Ri3JACv1+Xz02MQjm +FD1drDGEOqFLqnLX3YwhKSrjXsLWnEiscw1GBx/zmZmlPkxT+9Rqhw3b/72 6NEna2tfaNAmUTnMkejy595TyRINwSVbdcNtPWU1XV2Mcmh8I105xKlQjoYh kqACLH+J5JZjCPmaQW7sDf7yaMUQIlcb9xZG20hdFxrayUSGUGyP2n9XMbkl YhriG/LRsPNMbMya0fHjvzHxDasK6H58I+PUsxEbmeXK5dP953/+s0guR/xd 6KYbm4yfIEwN6Xt2L+p0Okb/MIR8zWCfjBYdFg8ceIgh2Fcb9xbsglQkxY2j 1oYw0Yu6vAVT0cv2jXHKoespOqaPNwSX/I0Nt/yNG+nqgjOUz/oot9zInvSf NhiCNFteLjiLkoN09k+Yoi9PidX0yDmGYIiUtoY4GEK+qzk2e/PNfzH5G+ob g8Egrhwvv/x/jx37J02TMFmyY0QiI76BJFTC1tbW6Fe2G1y6cuX99BUl0xvT Jy6eG0L5+yzABZccPAzBoAsNyy7HrbWSCjNb2mAIxT4epdnMzJ74RqJyEDGr kDBz7F1jceIM4x7RLr0RQ4DcJB4QqWAIo4tsmZ8SCw3jMD9APw3B/RSS9hiC y4tC5Yi52bVW4iFfDCFfM5gIrQsUiaJjCIpGa/uZ12olxc7TizWEYuMb7TEE uTdiZj6wvb2tj2gTUtB5iueG4Gc1J8hBYj4ehqBoHpF8VDOu1UowhHxX89wQ CDV4xWAwsDdIhjt8MYQ8zSAfkQV3DMG6zrOFBnajx8EQ8l0NQ4BJkeePtedl 9bnnHt258zC1PYaQ0IypXm60+/31X/+Dt4YgVyvTEHashYb0czPbSb/QAt0Y QvxFMQSIIBO62dkTQTAMgsV4zSUFQ0hsRt/eD8Ph0Ajqd77zIF1Qd6ozhJJH B61LyUJDnGIHRAwh/qLuz73MXFoMoUlYGyR3WVlZiQQ5MYTEZvTt/RMuvl8W QU0fE1tiCHrCBQsNcTCEfFebhiGU/BbAEyI1l7SiBYaQ2Iy+XRTjDohUWmII YgUvvfR2WNqOejJRMIR8V8MQoFi2trbsDZLdbrdYQyh26McQmoHm6dkHRCot MQTh9dd/HZ4SuGoOwAKb5WUMYeKrYQgwDeQprauiQTD/3e/+45tv/kvmd2EI sB8iB0Qq7TGEtbUvjCEkmhJkgiHkflEMAXKwubkZbpB8evJXet34Ag1hZ7fM DobQOuwDIjXS3h5D+OCDR8YQWGjIB4aQ+0UxBMhNpObS8vJyYm3YYg2h/KtN 1Iy+PT00Z09sYadNhmDuzRgCCw05wBByvyiGAPun3+/bNZciFWIxhAh0/v2w srIy2v03aIAhuJdpMoawIB0RJgRDyP2i3hrCYEAJu5oxHA7tc8Y7nY5ZM8UQ Eq8GuRkdEHkxCB58/PEX6Y0bYwiHD//CfLLGHbgG4zA/wKIKK2EI+e6tkrcA HqJFdE1I4dKlrzCEHFeDdEYHRJ5Kn1Y3wxDkahcv/tJ8puJHrUE6E/2c/TQE l0r47lfDEKByrJpL7wbB3Z///L+npGFjCJCPcQdEKo0xhHfe+ci8UxYaJqUB hlBJMwwBSiCsuTQf/rebY5YYI8UQIDeJB0QqjTGE27e/1LfJQsNEDAYYQp5m GAKUxubmpl1zKRIpraT+kuPVJmqGIVRF5IBIpTGGINfUPJ/0/cUQodjBuhmG IB0vc+MshgAls729rbnoJl5qZkPTMISSK0LvYAgeoGOobqhpkiGMsyBIB0OI N3PpeBgCVMVgMLA3SP7qV3+HIUAh2IsOYqRNMoT09RQYB4YQb4YhgP9YNZfm g+Du8eO/ySwqiyGAC3ri2MWLv2yMIexYB1qx0OAOhhBvhiFAjZDH3ezsiXDX w+78aDB+6zKGAO6E4+liEDx47bX76S3rYghqPiw0uDMcYgjRZhgC1I7hcKhT JLvmkk17DEGaZdZ4gUzCAyJvBMFG+rFHdTEEPe/SrKFkfCdYZCbmYQgRMATw E50omQ2S9mk1rTIEQg1FoT1q3LkGdTGEHWuhISXUBjnAECJgCOAzVs2lZ8/2 wg1BullmzheG0AASD4hUamQIajudTifjO2ESMIQIDTAEjkJtPPJgFzdQT3jx xVuvvvp1sYZQfuUQDKEq7AMi7Sh9jQxB3wILDcWCIUQwD7TMLub4opUYgmnG vp82MKq5dCMI7gbBfEp1egwB0lHn1F5UI0OwgyEsNBQIhhCh2DG9QkNgMaI9 yOMxPMJmXjO64xvDMQTIZHRA5C5bW1s1MoQdy3DGpVVADtpjCI73hiFAfYnU XLK3h2MI4MjogMjg5Zf/tkaGMG6tBPYDhhABQ4C6MxwOtdCubpDEEGAiwrJd qzJYdzoZQXtPDCE96xLygSFEwBCgMfR6PQ0pzM6eOH36AYYA7siYe/jwL8QT 0gsae2IIO9ax1yw0FAWGEAFDgIYx2iA5H2YzbsjDMz0GiyGATebRSP4Ygq6P SIdnoaEQMIQIGAI0lW63F+56SKi5ZIMhQJyUQ5b9MYRIpmXGJcABDCEChgDN ZrRBMohsbVPqbgjyVba7TYPIAZH67/4Ywo610JCy8xcmotPBEJ6BIUAbiNRc WlhY0DlXAwxB2rAQPSV00UGrF3plCPZCQ8YloDgwhHwviiGA58Q3SDbDEFxy MiE39jkIXhmCBjpYaCgTDCHfi2IIUAu2t7c1PBsEGwcPPrp9+8v0b8EQWo6e qDgzc2F29ltPDGHHSplgoaE0MIR8L4ohQL3o9/vhFOxGECzKX1IK2GIIsPP0 yKRTQfDg9dd/nd6yNEPI3HwBhYMh5HtRDAHqSGLNpUgbDAGUMPf1YnqpotIM wc6oTCnjAAWCIeR7UQwBao0eqmuet/bzH0MAm8yix45PYOli+zSEndS9mVAg yyHylLh27cNDh77pdAbrIYPBYHMvRtUwhKleDUOAShjVXAq0YJ0MARgCxIkf EKmUOc1Us2WhYaqoFoYF2R6EZbrTWbSbiUwu76XT6cjvTkxDfEOsw/jGZgyj oBjCtJvx6YGJsDdIvvjirVdf/RpDgAj2+Qj2boIyDUGzKFlomDZ7pw+nsgxB GDqIxOVQJBazmq3azeK+sbKyEvGNXq8X943RG8EQ8jQDiDCquXQjLOM8n54x jiG0k3hdgpKXqu39mBPdORRFfCyWAXp9L51OJzKsj/Ry3s03bkwqEuPZE9+Q /hO5MZkfyQ0vLGypb/T7/cgbVCVugCF0uxgC5Eemin/5l/8t/CA//UAlTtYw hDZjVzgs2RB0oUErO0F9kadN3DfWYyzHGBXHuOxgCMY3MuMbwmeTakn8xuK+ MS55Y6ciQ3B8dAOkE6+5ZH8VQ2g51lkJiy+8UGTZhPR+ZS80cIoT2MjIGxmL 5SHm4hsO8mDzbnHxjWfNpD/Hb2wUkBmk+IZ+CtwNQR6krNFBIUj3S9wg6a0h yC2hx6XR7/dN2YQzZ66ntyzKEOx0CBYaYHqIi0bGYuntEdnodrupvuGynuLi G4uT+sa4ZFET3zh+/Hdra9c1WRTThv3T6/XskMJrr9331hBcRiIokPPn3wjj vWmbEAvcEBcm1u4GjVeIKEFNcEnekP4cGdbtvWYOvnHKTSQumkwz+582xxc8 AXBnOByOOu0N6Y1vvvk36f6JIbSEzHJGBRrC5u5evA3pfn/yJ+eZ/kDbcEze GJ8smgzHnUCBhAljlzWiNU5BMYRWET8gUinQEOQJeezYJ2a6xNwHYD/YvlH1 vUDTEO20vbQbO5sZQ2ghiRsSiy27d/bs3xtDiHc5AADwB7FQu+aSDBAasMIQ 2kl8x0GxhvDaa/eNIYyrBQ0AAF6xubmp2YxBmLeGIbQZrV2wsrJSrCG89dbj 73znaVIW0VEAgLogczqtqBMEG8eO/dO9e/fTv8XdEDIrimMIvjFadFg8evRJ UYYgHea55x4ZQ0gv/gkAAB4yGAxmZ0+Eaefzc3Nz/fHDg7shZDbDEDwk3H2w ewbQSy+9nb4o4G4IR448Noag9Z8BAKBeDIfDxJpLNoUbAvlrHhImq5xKzGhV 3A1hdvbbmZkLbNQCAGgAuhXOJLDZie6mQmN6IdCJDIFSOn4y7oBIZaLa8ktL V82lWGgAAGgAe0+V3Z1OyqjhUsMZQ2gM4aJDkLhAMJEhvPPOR+OuAwAA9UUT 3YVjxz6ZmXmCIbQK+4BI/ceJDOH27S/TCzkCAEB9kelkGHbeMNvbU8LFxRqC XIRt9JVjHRD5dNFh0hNsNcUl5UgIAACoLzJSnD37f/TMEbvmktWmYEOQS7F8 7QODwcD83mW4n9QQNLllOXMfLAAA1BkZLOwTJO2J4TQMgcUIfxhFA1b/6I++ cTcEMUkWGgAA2sPemku708PtXTCEhjM6IPKzmZkL6cO9ndqqia8pBTcAAKBh 9Ho9DSnMzp44ffoBhtB4XBYObEPQlNf4gZIAANBsrJpLd+W/n/zkSkpdPvkK htAANAXRrpuh2IYQPyUKAADaRjhbvBzW7w1OnjyZeGSP49CPIfhPytAfKaCR eN40AAC0jcSaS/pVDKFhJC4iRAxBDx9noQEAAMQKdFywN0hiCI1EndAEjiKG oEUaWWgAAABlVHPpKWtr1zGERqKLDvLrfuutx7Yh2Mc9JK49AQBAa7E2SM4H wd3jx3+Tvl0OQ6gpo8DRxvPPf22XTdCAUsrBkQAA0GYGg0F4KPCNeM0lGxlc Tp7EEGrJKGLwaRAsasRAFxrkSyw0AADAOKwNkk8T2CKjBgc81Z3IAZH2EQ8s NAAAQCZ2zSX5i+6GwxCawcrKivnlrq+vax1OFhoAAMCR+AbJO3cecgRkM7Cj B3ZUAQAAwB3dXB8Ei7//+w8vXfoqvb1JaORgYf/RAyIN8bNBAQAAMpHhI0x1 exAEGyZAPa4lWx7qhe55XOF3BgAAedne3r5y5f14zaW9bTCEOtHv9/UXynnQ AACwTwaDgb2QbW+QxBDqxej86GekHBAJAADgglVz6enIIsMNhlA7dJermJ7+ vd/vV31fAABQe2Q00Xno7OyJ06cfYAg1QsTAjh6I5umiA5WUAABg/4xqLu3W cA6CjXjNJfATXWiw8xASD4gEAADYD2tr14PgXZ2Helivz6yPsL9P0doXkZrb +u9aOAsAAGCfxGsu+RNSkDsx93bkyJU7d+5VfTvVoxGDeJqifUCkP79BAABo AHqGoFd58jLYhfWHV8MiD6danpinGjAu90AVgvrMAABQLJubm6Y4z7izIytB vOD5578OgkWGv8wFhdEBkbt4uHIEAAC1RkYZr2brci9zc7uHUtmFg1ZWVloY TndMTbTPjC7t3gAAwGY4HJIeNm3UEAwy/Om2TZlTt8oTdOh32eSoK0cp9beh kZDfC+AD5pReeVxXfSNNJmIIBjvHUn7+LXkk2osILmpqHxDZkh8RjM5nCajO DVA5WsrGq8h8k0g0BIPudxBeeOFHbYjnaGTAPR9DD4jk/OiWoOtxHPUFUDky Tvm2C6BJiCEEwU562t1oy4O0POVVmmXh2DkGE62waPHtZv98QNFwE8EEgMox Kw58HgvHGEJmhMY0Cz2hybOn/exW0EUHDohsCRo+aurHARpPv99vzAqpzu/a vCOvcKR3zM25GoL8aZ9Asby83LxURnXRfN0scsQDNB496gsthDqiW9ikJ8tD T55gtd7KbaZ4pC8WxaSGMPquLXvLQ5OejXZeQW7/sQ+LLPb2wEN08kIwAWqH 9t69rAbBZXkGSpdeX1+XNjWaDJK+WCwnT05sCAYRg+ZteShqh4J9GlSNPlyQ G4IJUFPkASUOICYgPjB6pJtau4sRb5AZeqfTkZYyk/K5n5O+WDIp6QrmEKhR D7rYAG0rsNYBB0S2CoIJ0Ayk/x49+uSddz6SnqzqG2M+CDZmZ09IA3nQeZjS QPpiabgkNNqnPDSgjpC8haI2MMp15ubmWHFoCfpErfV6LrQZMYTEOjmiATKB kh4eBkjFEO6G/81H1MGkNEjjyj8CpC+Wg/uWh8OHH2tsqp3VmxORDxce2x70 uUSQE+qIGIJMj9KfWPJoP3v28enTD9bWrks/111gSdw4e/YnMhyYNMjyBwXS F6eNuyEY82xz9WYAA8EEqCnGENIf2/JVaRNppikNnU5Hs9SCYCMeatCUBmlf wuxJF3wbsA7uIZMagkFL1Jr+4NsqFcC0IZgAdcTdEKRl5vzv0qWvfvCDf37r rZ+PT2nYzWo4cuSKSWkYDAbTGCzEQ/gwTol8hmCwqzfPzc0xn4K2QTAB6sVE hpBOYqjBTmlQQxhlNUw3pUHz6ln2LZD9GIKimaWEeqBtEEyAuiBDuXTSqRpC nHv37p8+/eD48d+dP/+GrlAn8sd//NFPf/r2fio7adEb0heLohBDMITrQYtm ywObwqBVEEwA/3Ec04s1hHgzO6XBSoOcD4JPI1kNdkqDe84b6YsFUqAh7ISF HMMtD09PeZBfLqmM0BJYDAXPMYO1dM9qDSGRW7c+/8EP/vl737t/7tyFlDjD 7OyJ8+ffyKzspOmLbTi5eKoUbgim1HODqzcDpKArbgQTwENk3Hcc+ks2hHiz pJSGYJTV0E1MabDTINXYKWq3H6ZkCIZGVm8GSIdgAvhMZljXE0OII5+sjz76 38eP/+748d+kpzSYgyd6vZ4OQMxS8zFVQzBsb2+rBMqvlVRGaAMEE6CmeGsI 8XuTcT8ppUFDDauRUEPtDquqnBIMQbG2PFxeW7ue53YB6oMGE4qq8g1QAv4b Qkozkwb5q1/93fe+d//FF2+lxBnEKLRKAxGGcZRpCKNL9fWUB7Y8QMlsbW1t WpSw8qViTPQMasFEhuCY91htqEE+6fLpsw4iTGZubi4xpaHNlG8I5mpHjjye mbmgMyzCPlAaqfXfAu2TyzHWY5i92xHinVmDCTJtqeQtA7gzkSH4HGqI35sd 1hsMBvIRHh1WNRZpoAdPZLzVJlKVIZir2dWb5VeGtkE5uEhC4di7e4xyyJNH ZePatQ/NX+TBFVEOPhdQJg02BENi9UX5u3GGWEpDFPn85qjSUFOqNQQD1Zuh fOzlhn6/H48PxGMI1oE10+Dp0ltqG5N/ddH8H7OQmhjo6HZ76YEO82xs+uMN 8tB4Q9h5Vn3xlHxAxl/kaWUnMfn0z36DUxp8MASD/Dqo3gx1JJLbYIgrh3Rv M4jbp55ZEU5jCIsOhhA9TS+JjbBCXSYb4X/PiCuHTJfW1q5H3ks80IHYN4Y2 GILh+9//K/nQyZ8Z7Sykn4tyx6o0RDEpDfJJqXtKgz+GoMgPf/RjXr1y5f2M awHUkHhmgv2hMJOXCCbQcebMF8eP/06HbBm+xwQ6Eo7lHWMILs3EXoZZbYLE 68QDHefPvyGf8bhBjQt0QMm0xxDk43bo0DdmU2Tu6oumspNjSoP0/HqlNMhH 0DdDGLXRLQ+LVG+GRmIfbb++7vQRczmbL7GZ2TkeYWFhy/aNcHmiGw8jHD78 C4f4RuAcuHD0jRtBcDnxC/E8UrMuHKHu07eqaJUhyIfu/ff/v+lXRVVfnCil wSQjeZ7SkKnq5RuCaTYz84QtD9BgpEubecexY59M1RD202zcBzbiG5cufXX4 8GNNuVQigY4zZ64fPPjIzTcc4xufpXx5mcqWE1KhIcgQXb4hmAFrqodH24dV ZaY0GN2tV0pDVYagWx6o3gwNJgwmyJT57nvvfZre0itDiF9tos91HDvQIb7x yisPb936vNfrRZTDDnQY31haupoyWUMSJqJCQyj5apEBSw+PTklfLBCT0mDS k1KcoRYpDdUagoHqzdBgpHsfOXJFpszpNROabQjTuDfjG94+Wj2ktYZgMKpZ SekS+7Aql5QGaexJSoMPhqDYWx7EwTKuAlAfNDNhXMdulSFIs6IWQKVZKfPC JtByQ9ixsuUrPzxaUxrsPVCJ6GFVlaQ0eGUIBvlRjH42i+fP38y4FkBN0MwE +TP+SW+bIRR1NcdmsOO3IQiFG0KijHt7eHSOlIYStgV5aAijNv0wlfFBEKyK ZZHKCM1AgwmRJVHHmbV7MwwBInhuCC6ddiJDSGmm69qeJw1qSkO6M5iUhmnc gLeGYF50ZuZJuCHrabCFNUdoAInBBPdNkWWu9U/0ohiC/2AISrjvfj4IFstJ XywKO6Uhvh5R+Mt5bgjmRSPVm/EEaACRYEKxwyuGAOPI/Fm1xBDM1Q4cuBcE N2p98pqd0lC47fhsCKaZvqh4gn3KJ1seoO7YwYQPPniEIeS4GoZQOK0yBLna 2bN/b8aUytMXPcRzQ0gsC2lVbw7k7xlXAfCbUTBh9dChbzCESa+GIRRO2wxB mmn64orLjbaJOhrC6Kv9kSZclF8rqYxQa/70T38YBMOZmQvpPRlDyNcM3Gmh IRh0ZZ/RRCncEAo8DMLlapubm6Pa8qeo3gy1RqU3ZTHR3RC8HdMxBM9prSHs WJ9BCvIY6m4IO6NTHl599We6V5RURqgvpnxKYs2EHQwhb7NuF4twpQGGMBzm NASDyQ6qdfpiUTTDEMzVIlseSDuBmpISTMAQpvqisNMIQ9h/M81286T6cVU0 yRAUu3ozWx6gpmgwwS7q0oAxHUPwHAzBQPqi4eTJphmCQfeb8yuGmqLBBO3A DRjTMQTPwRBswvTF+SDYGA4fZFyuxdTREEZf7Y/O0qJ6M9QSPdhFJjXuy+7e jukYgudgCBE++OCjILgrkkD64jjqawiGra2tP/zDX+uWB89rcQNE0GDC+fM3 vR1eMYRmgCEkNgtHENIXk6m7IeyE3e+FF77VLQ9Ub4baEQYTVkV0b9/+Mr0l hpDvRWEnfNrLMIghxJuRvjiOZhiCbnmgejPUlDCYcCMIFtNTazCEfC8KBgxh XDPSFxNpkiFY//Jsy0O9jveClmNnJiQ2wBDyvSgomSux7TQEA9UXI1RlCI4v up9HhFW9GS2E2rC5uZnSaTGEfC8K7rTZEHaovriXCg2hnEeEPG9HWx66585l 1MYH8ASdy0SCCQ0whPV1DMFrWm4IBqovGhpvCIatra1jxz4JN7bMU70ZakFi MMFnQ5Apl7daAu5gCAbSF3daYwim2blzT86du6BbHtr8e4e6EAkm+GwIPgcu pBnF2h3BEBSZS7Z8nbpVhmB66fb2NtWboUZoMKHT6fg8WHtuCC6nZsMOhhAj PBXoRhCcauEidQsNQaF6M9SIUTBh9ejRJ34O1hhCM8AQ4pw////MInXb0hfb bAijV3m25UHmaHfvUqMbPGUUTBguLV1Nb4khxJthCI5gCHHMIvXs7Im2pS9i CIatrS095eHAgYf37t3PuBxARWhmQkoiDYYQb4YhOIIhxNG3oCvULUljwxBs hsPhyy//bXjKwyLVm8FbNDNBbCGxAYYQb4YhOIIhxLHfQtvSF0+exBD2vOjs 7LdLS1d1ywOpjOAnKcEEDCHeDENwBEOIE38LYfri7gDRwvTFOK0yBL2aveWh bQkqUAvGBRMwhHgzDMERDCFO4lvQHDZmkfIBbIAh5HtRcQO2PIDP6IFlGkzA EOLNMAR3ChzTi72aV4YQXmHbJLAtyJdbjHu6grcPnH0+lwaDwSiVcbczEFkC r9CT6UwwwXNDkKcphuA5YemYjAYtMYQwQTHtLWi0ubWpaxiCwd7y8OqrP2tt fwA/0SfV2toXnhvCROt96VfDECqhVYaQuewSpi/OB8FnP/3p2xmXayIYgs32 9ra95aEl216gFoyCCasHDz7CECZ9UXAHQ4g3++53/zEINlqYvoghxJvNzn77 5pt/Q/Vm8JAwmHBZDDZdXzEEyA2GkNgsrL7YuhEBQ0hppkeACfL3jO8EKAXN TEgpAYch2MhXOd3JHQxh3NVamL6IIWQ2s6s3ywyubVEm8BPNTEic0WAINuYJ P6YGFUQxgwKGMO5qrUpfxBAcm1mpjGx5AC9ICSZgCDaOAwEY2mYIYXBgsqu1 p/oihjBRM+kYpuJWEHRnZ0+0wSHBcxKDCa0yBNIViqWFhpCvWRuqL2IIOZpJ f3jxxVvhlodT0j0GrHFCpcSDCRhCvnuDnUoNIfNqcm/Sxz0xhJ0WVF/EEPI1 6/V2m9lbHvyp3rwZsh6yHOLV7XmLDK/ie8sx1mPI02AzRtW3vyeYgCHkuzcw yKTHJTW7EkNwsZcyQw2NT190POAJQxjXrKrqzdIzZWAaDAYyZnW7XZWBcUiz 0u6tpqT89PIh1lGmcujD6tixTzCEHPcGE4EhKKGfzwfBYjuXnjGEzGbykNdU RhkFil2ZisvAKB3CCTM17nQ6LIhkIj+lyIA+0Y962rgoR3jDq0Hw4Nq1D9U3 Eh9cDTAE0V4MoSowBJs7d+4Fwd0guNH49MU4GIJjs8iWhxw+ORwO5XkuvpFP BswIIl1Uvr3X640bGmD/yA82Mus3ChehUuU4ldVg9cCBh0tLV+3bkxuOvYXB kSOPb978rf1m4/2qEkMo1l5gIjCEeLNjxz4Jmp6+GMdnQ6jk3tKbSd8YjQKX Z2YujBujbRmQMV0ezjK+uz/9bRkwYWq5YMZ9g8fElcP0jQjxGMJE3SbGZ0Gw mNVm0ZQiz2q2IXOoc+cuRG4vohziG4cOfRPxjXjvxRD8B0NIbKbrzk1NX4wj bzQIMITJmokn/PjH/1MfrdJtcsuA+AYyAJNiRl4T1DKbbvanHJkRiYthlHU+ q9llZ9/YbRa/PfNBsH3DXk9JVA4MYRpgCOOaycNfH90Z39YIjCGUnNBYU0Mw M0HxAXl8iSEcPPjI4WH4DCMD3W5Xvl0e6XKpVkWrYBpIXzK9a5/ZqvFROK4c mjRro0tvI+YdfEP41OGz4+gbN7SZuSVW3/aPeURjCOOataf6IoaQ2Ozjj79Q GTDLzbEnYdrjCxmA0tBtDv6skJr82wjm0zShcsy7SfhipFm+DSOguDyiiz3l oV6GsBNKtelszU5fxBDM40ujsmfOXJcfSJgxnsnudMk81sy3U70ZqqKoYIKf 5FCOxk/upgqG4NjMLNvJkz/jErWlVYZw9OiTmzd/ay/Rjhn6VxMNwZYB84yK v4o8l3SpV/7CYwpKw8NgAtQUUzgOQ3Bp1uz0xUYagl1kwJKBVbdlzWdFBtZH +wonDVpaWx4CqjdDmTQ7mAClIcNietI0hmA1MOmLuyHljGvVkPKLMxdoCPKr WVv74siRx9eufehQZCC6XhmXgWJn/ZrQ0lTDBA8hmAAl4LMhyNXKF4mwVr9M QldbuB/NB0MwRQaSyg865TybIgPTk4EUdFoXND2tBfxBg58EE2AaeG4I5Uck 5EWPHn0SbuYNui6nXzSIkg3ByMDVq58fOvSNiJlDkYE9wQE/Kw5NtXozQCKa SUV/g2LBEMa9aOPTF+NMzxBSyw9mZw74KQMpRKo3e3630AD0HFuCCbBP7L0k t259/sorDy9d+iq+zSSCtJGW0j6lzc2bv5UJeObVHF+02KvleFFdX9a0dg8p cNZQiCFoxaGFha3nnnu0tHTVofzgs+BAk4oMiBjYqYxseYBpQzABCsF6OM+H lTY3sp7hQVjVKrMmpykAnnk1xxct9mru79TlRT1is6DKIZMagl1+MKniUEZw oEkykIK8Kd1xKT8fUhlhqhBMgEKwHtUydHbdxqJTDlW7Ha/m2OyG22Bd7IsG ExXa9YFCJCHFEEy8wuwrNLWIZ2YuuN3abnXWeJGBRspAOvaWB57eMFU0cMcK F+SmiqB4XVEzl8ly1feSzP7HXFNAw5zallpx6HJYkPByohC4VBxqM9qRArY8 wDTRnkY3AyiHpqYvmkj48eO/cSw3JG2OHLlinwyLDEzEYDCgejOUAMEEgDJp cPVF+wA1m2lXHGotVG+GEiCYAFAmenh086ovfv/7f7W0dBUZKJNI9WZCMTAN CCYAlIkmnvGJg/0jnkD1ZpgqBBMAymRzdHh026ovwvSwqzfTr6BwNGDF1Aag BJqavggVYm956HQ6pDJCgejUhmACQAnovI/gMBRIpHozngAFohuZCSYATBv5 lDU1fRGqRTyB6s0wDQgmAJRJp9NBy2EaUL0ZpgTBBIDSGAwGpJnB9LC3PPR6 vapvB5qABhMIgQKUgElflD+rvhFoJlq5ixAxFIUGEyjKATBtNH1xMBhUfS/Q TKjeDMWiwQQOFwOYNpq+2Ol0qr4XaCyRLQ+kMsI+6Xa7hBEAyoH0RSiBSPVm PAEAoBZo+iKxO5gqVG8GAKgjpC9CaXS7XVa4AABqRK/XW19fZ7kByqHf75PB CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI3nXwH3Bmcl "], {{0, 238}, {695, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], BaseStyle->"ImageGraphics", ImageSizeRaw->{695, 238}, PlotRange->{{0, 695}, {0, 238}}]], "Text", CellChangeTimes->{3.6334530336939125`*^9}], Cell[CellGroupData[{ Cell[TextData[{ "Edaspidi nimetame s\[UDoubleDot]steemi lahendite hulga poolt moodustatud \ kujundit (nii l\[OTilde]plikku kui ka l\[OTilde]pmatut) ", StyleBox["lahendite piirkonnaks", FontSlant->"Italic"], "." }], "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633449263451936*^9, 3.6334492814387674`*^9}, { 3.6334493513580904`*^9, 3.63344940249498*^9}, {3.6334494619778843`*^9, 3.633449471462701*^9}, 3.633449524487194*^9, {3.6334523293682756`*^9, 3.633452384670373*^9}, {3.6334525638834877`*^9, 3.633452571246701*^9}, { 3.6334526159875793`*^9, 3.633452624302394*^9}, {3.6334527272937746`*^9, 3.633452744500605*^9}, 3.6334536022993116`*^9}], Cell[CellGroupData[{ Cell[TextData[{ "Vaatleme neid lahendite piirkondi. V\[OTilde]ttes suvalisest piirkonnast \ kaks vabalt valitud punkti, saame need punktid \[UDoubleDot]hendada sirgl\ \[OTilde]iguga, mis tervikuna kuulub samasse piirkonda. K\[OTilde]iki \ selliseid piirkondi nimetatakse ", StyleBox["kumerateks", FontSlant->"Italic"], " piirkondadeks. " }], "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633449263451936*^9, 3.6334492814387674`*^9}, { 3.6334493513580904`*^9, 3.63344940249498*^9}, {3.6334494619778843`*^9, 3.633449471462701*^9}, 3.633449524487194*^9, {3.6334523293682756`*^9, 3.633452384670373*^9}, {3.6334525638834877`*^9, 3.633452571246701*^9}, { 3.6334526159875793`*^9, 3.633452624302394*^9}, {3.6334527272937746`*^9, 3.633452744500605*^9}, {3.6334536022993116`*^9, 3.6334536319237633`*^9}}], Cell[TextData[{ "Punktihulka nimetatakse ", StyleBox["kumeraks hulgaks", FontWeight->"Bold"], ", kui selle hulga iga kahte punkti saab \[UDoubleDot]hendada \ sirgl\[OTilde]iguga, mis tervenisti kuulub samasse hulka. Kumerad hulgad on n\ \[ADoubleDot]iteks ring, pooltasand, kolmnurk. Ruumilistest kehadest p\ \[UDoubleDot]ramiid, kera, korrap\[ADoubleDot]rane prisma. Kumerad hulgad ei \ ole n\[ADoubleDot]iteks r\[OTilde]ngas, t\[ADoubleDot]htviisnurk, \ 180\[Degree] suurema kesknurgaga sektor jmt. ", StyleBox["Saab n\[ADoubleDot]idata, et iga kahe tundmatuga \ lineaarv\[OTilde]rratuses\[UDoubleDot]steemi lahendihulk on kumer. ", FontSlant->"Italic"] }], "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633449263451936*^9, 3.6334492814387674`*^9}, { 3.6334493513580904`*^9, 3.63344940249498*^9}, {3.6334494619778843`*^9, 3.633449471462701*^9}, 3.633449524487194*^9, {3.6334523293682756`*^9, 3.633452384670373*^9}, {3.6334525638834877`*^9, 3.633452571246701*^9}, { 3.6334526159875793`*^9, 3.633452624302394*^9}, {3.6334527272937746`*^9, 3.633452744500605*^9}, {3.6334536022993116`*^9, 3.6334536319237633`*^9}}] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[StyleBox["Graafilise lineaarplaneerimise n\[ADoubleDot]ited", FontFamily->"Gill Sans MT", FontSize->32]], "Subsection", CellChangeTimes->{{3.632940434746666*^9, 3.632940445994285*^9}, { 3.632940478177142*^9, 3.6329404956803727`*^9}, {3.633353895043041*^9, 3.6333539102218676`*^9}, {3.633449298988798*^9, 3.6334493098620176`*^9}, { 3.6334518760406804`*^9, 3.6334519165695515`*^9}, {3.6334520381717653`*^9, 3.633452066688615*^9}, {3.633453313152804*^9, 3.633453332450038*^9}}], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["N\[ADoubleDot]ide 1.", FontWeight->"Bold"], " V\[ADoubleDot]ike tislerit\[ODoubleDot]\[ODoubleDot]koda \ \[OpenCurlyDoubleQuote]Aken ja Uks\[CloseCurlyDoubleQuote] toodab puidust \ aknaid ja uksi. Akna valmistamiseks kulub 4 m neljakandilist h\[ODoubleDot]\ \[ODoubleDot]velpuitu, 1,2 ", Cell[BoxData[ FormBox[ SuperscriptBox["m", "2"], TraditionalForm]]], " klaasi ja 6 tundi tisleri t\[ODoubleDot]\[ODoubleDot]aega. Ukse \ valmistamiseks kulub 20 m neljakandilist h\[ODoubleDot]\[ODoubleDot]velpuitu \ ja 10 tundi tisleri t\[ODoubleDot]\[ODoubleDot]aega. T\[ODoubleDot]\ \[ODoubleDot]kojas on \[UDoubleDot]he kuu varu \ h\[ODoubleDot]\[ODoubleDot]velpuitu - 1400 m ja \[UDoubleDot]he kuu varu \ klaasi - 90 ", Cell[BoxData[ FormBox[ SuperscriptBox["m", "2"], TraditionalForm]]], ". Selles kuus v\[OTilde]ib arvestada 900 tislerit\[ODoubleDot]\[ODoubleDot] \ tunniga. Peale t\[ODoubleDot]\[ODoubleDot]meestele palga ja riigile maksude \ \[ADoubleDot]ramaksmist teenib t\[ODoubleDot]\[ODoubleDot]koja omanik iga \ akna pealt 10 \[Euro] kasumit, iga ukse pealt aga 30 \[Euro] kasumit. Kui \ palju aknaid ja uksi tuleks valmistada, et t\[ODoubleDot]\[ODoubleDot]koja \ omaniku kasum oleks maksimaalne?" }], "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633830348030595*^9, 3.6338303743010406`*^9}}], Cell[CellGroupData[{ Cell[TextData[{ "Olgu toodetavate akende arv ", StyleBox["x", FontSlant->"Italic"], " ja ja uste arv ", StyleBox["y. ", FontSlant->"Italic"], "Koondasime \[UDoubleDot]lesande andmed tabelisse:" }], "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, { 3.633365190755666*^9, 3.633365248553767*^9}, {3.6335186668747034`*^9, 3.6335186714143114`*^9}}], Cell[CellGroupData[{ Cell[BoxData[GridBox[{ { StyleBox["Tooted", FontFamily->"Arial"], StyleBox[ RowBox[{"Valmistada", " ", RowBox[{"(", RowBox[{"tk", "."}], ")"}]}], FontFamily->"Arial"], StyleBox[ RowBox[{"H\[ODoubleDot]\[ODoubleDot]velpuidu", " ", "kulu", RowBox[{"(", "m", ")"}]}], FontFamily->"Arial"], StyleBox[ RowBox[{"Klaasi", " ", "kulu", RowBox[{"(", FormBox[ SuperscriptBox["m", "2"], TraditionalForm], ")"}]}], FontFamily->"Arial"], StyleBox[ RowBox[{"T\[ODoubleDot]\[ODoubleDot]aeg", RowBox[{"(", "h", ")"}]}], FontFamily->"Arial"], StyleBox[ RowBox[{"Kasum", " ", RowBox[{"(", "\[Euro]", ")"}]}], FontFamily->"Arial"]}, { StyleBox["Aken", FontFamily->"Arial"], StyleBox["x", FontFamily->"Arial"], StyleBox["4", FontFamily->"Arial"], StyleBox[ RowBox[{"1", ",", "2"}], FontFamily->"Arial"], StyleBox["6", FontFamily->"Arial"], StyleBox["10", FontFamily->"Arial"]}, { StyleBox["Uks", FontFamily->"Arial"], StyleBox["y", FontFamily->"Arial"], StyleBox["20", FontFamily->"Arial"], StyleBox["-", FontFamily->"Arial"], StyleBox["10", FontFamily->"Arial"], StyleBox["30", FontFamily->"Arial"]}, { StyleBox["Varud", FontFamily->"Arial"], StyleBox[" ", FontFamily->"Arial"], StyleBox["1400", FontFamily->"Arial"], StyleBox["90", FontFamily->"Arial"], StyleBox["900", FontFamily->"Arial"], StyleBox[" ", FontFamily->"Arial"]} }, GridBoxDividers->{ "Columns" -> {{True}}, "ColumnsIndexed" -> {}, "Rows" -> {{True}}, "RowsIndexed" -> {}}]], "Text", CellChangeTimes->{{3.633365472881363*^9, 3.633365591784772*^9}, { 3.6333656224232254`*^9, 3.6333657757246947`*^9}, 3.633365853896432*^9, { 3.633366004458297*^9, 3.6333660076251025`*^9}}], Cell[CellGroupData[{ Cell[BoxData[{ StyleBox[ RowBox[{ "Leia", " ", "lineaarv\[OTilde]rratuste", " ", "s\[UDoubleDot]steemi"}], FontFamily->"Times New Roman", FontSize->28], "\n", StyleBox[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztnUuO5DYMhgtJLXoxl8gZ5gTJERL0AWaAeBtgEiDIQbKoO9U1co6k/JJl maJIibKlzv8BPeie8kOifssUpRJ/+Prbz8N3t9vt97fXPz9/+fPHb9++/PXL /fXHT3/98evX71+//P36+ef1M/7+LwAAAAAAAAAAAAAAAICLeQy32/1+Hx5X FwQAhufj8yTUz4/n1UUBgOMl1ZdQb+hSQftM/So6VdAFo7cKsYI+gFpBP0ye QI7TOp2Yd+qprEPIGVmBl/CI+PgzedVH0Ls8hpxRs6hNtcYxNWZm5zpWrMnW 3PGq3J2CKXUw6pz/bOPt42zOFGfThr7Y6TbVGsfemFlyne/buFxnrfrlc8WO GY2MkByvczqLkBLRm/17RCuMZJtqjVPDmDlRAc8s7cp1LCRVr+ktSfdRa73C Kk2nXFRTmVAD1joq2jXZplrj1DGm3nVdzpgfk2bl+iplrGTOQwgOiNdoecOe 6xJkCXU7VVXgdJtqjVPJmFq5uuNPlqvWZ3kM8YKtnc/hNXWLaONkR71AqNsF FJIQtKnWOLWMqZOrd3TjcuWvRTgDzkmgKrRWtnb/WizU7TJiuUraVGucasbU yHXnDgrkuj5HwSExr4bFXq77q7mBBjME48ocrdRihFRlN6Ea1FIhV1Gbao1T aky+uDK5BmMXVq6b8cOCrc+dtgMxlOtcctLXitmQsb8fbTg+BU45bOGtfWOx XIVtqjVOtjGTSOV6GGiLnIGgscY/p+P1QWw7uY5Xym4RNiTJtXWq8Ff0ruI2 1Rqn2JhskdOnEVEhoe+6BN+ms7nhTworuc7lIccShRb2a0pcXfwGMxCtSK6K Nu1LrmQIUzrUWk33/v5eMnowkmv0MgYWpgMOy8U1dS8WrUCuqjbtSa6ReLs4 MrC+JYWm95xbCRoRc1MiBu5WbLTFhIBTpc0UbVKuyjbtx3eNTQ4pAlnrW1LW ZtXkGq2JV8iYDXn7ezc4ikS2IoW9qLpxE3JVt6nWOAbGjJCQq1g8SSUUvstL nYHxfNY87MSlLFRIDPALxepdRiNaXq4Zbao1joExmZrVlOv4KhzKv65YJFcX kUjd4c5PxMhG9ze/l7GcWHDBh9RFzeWqNk65MZma5ehI5gwsDbYcXKDXfLmK tLrcIlIjYVw0kGumz5pC8Ayo1wwsfLw1A4Ly7I5xAdfgaX0ob1mwLJdzUwb/ s+e8OJkYMAsezKWQrprKaIApFeSqNk6xMUms5TqXcvzPXa+2K3xOt5Mj1+Tg 6vDpk1iiKZxFXQq5yPUxnLt8a4+bnVGame+CtMYpNCaJsVxXQx0+8r8BkdOS arl6JYn6ZvEFGEFMRr60KeHJ0+y+ApB2KQU+NNUEonLwZ2mNU2JMEnNnIDbn qAtnUbdTaEA2mmBaZdOGxri5dbSSa7hUI13TQznS5dcaJ9eYJM/Pt0+fPg1l FwEL+FZxZSBXO4zjVuAI5GrFlaGA/w2QqwkuZAeqArlmskXs4LCeR3Zk4H+O v+EGtHoakGsm5PcTQWUgV9ARkCvoCMgVdATkCjoCcgUdAbmCjoBcQUdArqAj IFfQEZAr6AjIFXQE5Ao6AnIFHQG5go6AXEFHQK6gIyBX0BHP4fb29jZgSTzo AcgVdATkCjpCKld9aqH1Brut1Zrxk6U7rgQp5gWl9zeva6SyH4eUXHe7jeXt F0psSnZlM4r3oA6TG6a3fQ62iJz/xHdlDeHkethzUpu4LeiO3EaOFzXitkGf LF8NmVMium8qtZ0pYQRQgsgZYDMjRK4b2QrYJbc99Rv6GqF6x5ObntNeQSxL Udlm0SBAJFf95uHMBtkleWr0aIU6wWmMdgkqbcUPAkTTBHq5cvk049n9TMkS 6gS/Ky/1uAkSnaCDtUC0H1luaobYLSs7A/lCnZFs0b+zhvNw4rvHY3siC2Rz sDXkyiaAJJo+5hxS5xYWNbHn+UGcfJI+9ym611Imy4vSZNrJNZ5PIdxafyuY v789l+fBppAJ7/og13opUIHH2L6id5SlXKebppMme8MZl/EoPVVh07vyL/fs jL3wXvOZ44ryBDxGcp3bTuJ9OH+PG7VFzy4ULTeV4MQJuZ6C/qVpJlfxRtPr Hd/f33MbuVC062B/V146OxjkWonpTay3mo1cp6to0rmzIzLFTbNFG0wij6YL HJX9YfBd7RENselTSvPNnZFSLXpzE82Q2uMFee60yAflZN917NZ1zeW7r0aU i9Z5COHKgKRcEXcthV7FET0yv5V3yYzFpwzDoH0LiEuTp594PymY1YJaixGO 04vkmqHVdTHq0i9VeYnqMwyKulCsGaiKbOyVLddUivYh0vQu4Lrvlx6Pq9w/ NhI7Mr+qjpXFiixTVGsGous/yUuktOp9uvklu854pwFmkVddhEN7ar1rfCEi yEKyaGCLHB4aYxfkOVz3zhLIkroOHeeMYJVmfXdJunbxEtwP0wdwAwxhg6Hh JL5jaby9JskpfoZAl3dqPKIJZ9nJ1V+ioP/CT/65IIlNRlN9oAqADEzkmjP8 B0CPgVy1E1YA5FIqV2yyBU6kQK6qNSsAGGAz1ALgFCBX0A/Y0g10BEZKoCMg V9ARkCvoCMgVdATkCjoCcgUdAbmCjoBcQUdArqAjIFfQEZAr6AjIFXQE5Ao6 AnIFHQG5go6AXEFHQK6gIyBX0BG5X37xUq21/FUvRV77lhO7t5PO/mIrqeXq 7YvVtEw1ee0bTuwu3jy5fjr7FqykkmsfWSEOmx/qN7psIbG7JlUovRF6JP/j +pmq1o1YSS7X/vbYl+S1jyUWuXIbYW1O2/guslbp7JuxklCu/Wn1X9Gm341t 0p6VfLl+Ovt2rCSR6+U+QObWHWm5tpPYPUuoE/XT2bdjJYlc19Je17PWkmsT id3zhTpTPZ19E1ZaSMo1N4tZxM/PSEJXTa78W8N9Gi1qtC7ClAQ2yelqp7Mv tZIpKbnuEp8FYb2IkcMt4pV53iOFqCDX7OSYflIG4r1DJeIk61QoVEktytPZ N5VCNCHXfZaBo/C4Fglaze2wrQjdu7tdKdf4kxX13GKpFsjTS9u6cjr7phI0 83Llnp1kqqktEUZennf/Vm3Klc0E+rq6JgxVIFpuKqE8nX1HcmWLKphwWQVT kOd9KUabco0GNuVq9cpaINqK6ew/ilwlfkt6KjC4311DQsTVfNfjLYg4fE7z FYm2Ujr7pnxXvudKuPHOGunXpazxzpUrb2pRSIS+hXRFCnNREw2QFdTW2sBK hpwk18LBRN24K5uVmL8xMcAvFKt3mULRGqWzN7CSHbwUEtPuqWjM0ybP+5Wz WrLR/S5hqGXTiVdkHbBLZ19uJTsSUmCntJ6RNNPbx3NMINEDl5YxxhlrBgK5 ZvqsKfTPgGk6+3bWDCSlwMdqGB0a5nmvJ9foEydea+SHWJXRgGqYp7MvtpIZ aSnElk2OZ+6Lui27dHMC238X5HkvlCtvTmolp3AWdSnbItfH0MJ6NeFQXVtr 8fH53osIkRSO3stRq5s8Dk+cKs97bhkPbCHB1ONfkth9u4uuhP2ls5cc709P V+l1xVIIJso5p+jwmS6clV9GdzdaCdztcxO751atz3T2yeO9Lith8DyQBq4Q GJBmtAvk2hjGcauPw270YgfkWkAroYDmGMVaRVWTNwKbZ+AidWDPs+JWK09k eRezBerwTqKpr6YpJIXuVYC/5AlavQroVcoyiQOpXsr2jgOgB9jZfwCaQzbD DkBLPMqXpwIAAAAAAAAAAAAAAAAAoAX+A1nbBgk= "], {{0, 149}, {229, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], BaseStyle->"ImageGraphics", ImageSize->{203.25, Automatic}, ImageSizeRaw->{229, 149}, PlotRange->{{0, 229}, {0, 149}}], FontFamily->"Times New Roman"]}], "Text", CellChangeTimes->{{3.63336844844179*^9, 3.633368459455409*^9}, 3.6333685091102962`*^9, 3.63336857371001*^9, {3.633368620915693*^9, 3.6333686287469063`*^9}, 3.633369152597427*^9}], Cell[BoxData[{ FormBox[ StyleBox[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"kus", " ", StyleBox["x", FontSlant->"Italic"]}], StyleBox[" ", FontSlant->"Italic"], "\[GreaterSlantEqual]", RowBox[{"0", " ", "ja", " ", StyleBox["y", FontSlant->"Italic"]}], " ", "\[GreaterSlantEqual]", " ", "0"}], ",", RowBox[{"lahendite", " ", "hulgast", " ", "selline"}], ",", RowBox[{ "mis", " ", "annab", " ", "suurima", " ", "v\[ADoubleDot]\[ADoubleDot]rtuse", " ", "avaldisele"}]}], " "}], FontFamily->"Times New Roman", FontSize->28], TextForm], "\[IndentingNewLine]", FormBox[ StyleBox[ RowBox[{ StyleBox["c", FontSlant->"Italic"], "=", RowBox[{ RowBox[{"10", StyleBox["x", FontSlant->"Italic"]}], "+", RowBox[{"30", StyleBox[ RowBox[{"y", "."}], FontSlant->"Italic"]}]}]}], FontFamily->"Times New Roman", FontSize->28], TextForm]}], "Text", CellChangeTimes->{{3.63336844844179*^9, 3.633368459455409*^9}, 3.6333685091102962`*^9, 3.63336857371001*^9, {3.633368620915693*^9, 3.633368631960512*^9}, {3.6333687904255905`*^9, 3.633368796993202*^9}, 3.6333694842424097`*^9}] }, Closed]] }, Closed]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["N\[ADoubleDot]ide 2.", FontWeight->"Bold"], " V\[ADoubleDot]ike keemiatehas \:201eSmell\[CloseCurlyDoubleQuote] toodab \ kahte liiki v\[ADoubleDot]rve: siset\[ODoubleDot]\[ODoubleDot]deks (S) ja v\ \[ADoubleDot]list\[ODoubleDot]\[ODoubleDot]deks (V). M\[OTilde]lemad v\ \[ADoubleDot]rvid segatakse kokku kahest l\[ADoubleDot]hteainest A ja B. \ \[CapitalODoubleDot]\[ODoubleDot]p\[ADoubleDot]evas v\[OTilde]ib tuua lattu 7 \ t komponenti A ja 8 t komponenti B. Siset\[ODoubleDot]\[ODoubleDot]de v\ \[ADoubleDot]rv koosneb \[UDoubleDot]hest osast A-st ja kahest osast B-st. V\ \[ADoubleDot]list\[ODoubleDot]\[ODoubleDot]de v\[ADoubleDot]rv koosneb kahest \ osast A-st ja \[UDoubleDot]hest osast B-st. Tonni siset\[ODoubleDot]\ \[ODoubleDot]de v\[ADoubleDot]rvi m\[UDoubleDot]\[UDoubleDot]gi pealt saab \ tehas 2000$ kasumit. Tonn v\[ADoubleDot]list\[ODoubleDot]\[ODoubleDot]de v\ \[ADoubleDot]rvi annab 4000$ kasumit. On teada, et v\[ADoubleDot]list\ \[ODoubleDot]\[ODoubleDot]de v\[ADoubleDot]rvi ei osteta kunagi siset\ \[ODoubleDot]\[ODoubleDot]de v\[ADoubleDot]rvist p\[ADoubleDot]evas \ \[UDoubleDot]le 2 tonni rohkem. Kui palju tuleks toota siset\[ODoubleDot]\ \[ODoubleDot]de v\[ADoubleDot]rvi ja kui palju \ v\[ADoubleDot]list\[ODoubleDot]\[ODoubleDot]de v\[ADoubleDot]rvi, et \ kogukasum oleks suurim? " }], "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633669252124558*^9, 3.6336692604861727`*^9}, { 3.633669374799574*^9, 3.6336694140180426`*^9}, 3.633828015998099*^9, { 3.6338280581961727`*^9, 3.633828104341054*^9}}], Cell[CellGroupData[{ Cell["Esitame osa \[UDoubleDot]lesande tingimustest tabelina.", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633669252124558*^9, 3.6336692604861727`*^9}, { 3.633669374799574*^9, 3.6336694140180426`*^9}, 3.633828015998099*^9, { 3.6338280581961727`*^9, 3.633828104341054*^9}}], Cell[CellGroupData[{ Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztnc+L5Fi23wPbC/8B5oGWJrexq92sZC9ik5vmmdr0QvAC7FzUYmDsJxOL hoLXMAtBwEDBQIIgaWhoSAQJRUMRIAqagiFBDIaiCQSDKYpEXtSiCGJRJIlI 6+fVj7hXEVLox9XR9wMzVGeEpKs4Oud+dc+95/7n5R//+X/8u9ls9j//Y/B/ //wv//u//OlP/7L6b/8h+I//uvpf/33574N/PAf/+0/BP6J/AwCKzFKGbggA QAj8FAAA5AExGQD5gZ8CAIA8ICYDID/wUwAAkAfEZADkB34KAADygJgMgPzA TwEAQB4QkwGQH/gpAADIA2IyAPIDPwUAAHlATAZAfuCnAAAgD4jJAMgP/BQA AOQBMRkA+YGfAgCAPCAmAyA/8FMAjuB7zt21rs416/PQTanG329vNGU2U1/b 3uPQjQENQUyuAs7YnJ1r/2Jo8wvDeer0OnvXvjU0RTWcfafXGZap+Ck8jhBP jnExE9NiaEiCQHJe6R+evWOorf8GoGdGFJP788RnOOM5bcn/dB22J+hmrew6 0E7tA48TI5PHSc5+a+kL9tQo2nrj7tq9gGN8p+mv1NlYHh4IbwqMSDsldO6J z3DGM/jmmsvcT9ddz/LZ0i41jV0H2qkz4HEc5PG4EeC7ZvoAvTTdbzWO3H80 tXnw0KmrjefH53qwV4vwL7rl7v38RXb2Smn28Ox+M+8kf96AdIxPO53jic9w xn5gP13Xb+VfbP0FtFPXyO5xU3c36dnZejKieGV5NeJBbuQzOTD3l7LLpx/V DdfB654mvVYH0jFG7dTYE5/hjH3BetuOtdOTZ11BO3WO1B4Hd5OezOQ1n58a wrthuPYfrKUi/zgnkI5RaqfGnvgMZ+wLz9KgndpjYD+V2OPgbiPgnOen9kXq PAzJw4nnB9RmctqpyXXgjPWBdmqVEWunJtc52X3gbqNASu3kex/W4cPTILMA wNAxuRmyRnI4Ywa0U6tAOx0CdxsN5zw/SdmKdEFtOFx5bdnuobcfPDw71zaT AxXN2OQP2bnWSp3xKAWs8Oo/G8ljFrDQzbcOd3VA+ZvCdoaIKquUa3QklV6S W7Acz+edrVY7QUtMUTvBGXtwRq52Sv9Y+Hl+NH4srITP30K2EnxWMATjQDuV 19XXOpu8DOyn0nncye72PBmPk5lz5zstVvZD+LP53v06rmMx18yPJbsUHp4k L5xnvrQ++RWHHOB7m5X6QjPeRZllf+++S+24NLfFpabCdgbPx32uncFJ3t9y K6vsoyc9H5o4t1A6W/12gvYYOCY3o4XZF3DGjp1RMO4UzU6Jfm3j57t8N5Lc 74wzgpR9dIJ2Outs8jKwn8rqcUfHqSbkcTLT7PnxP1nL8EdQdDv7CfytuYjN srJ3gslytx/s1ZV+cx/Fl7SaRPUhB89PbJFyhN/fG4mSf2U9MFmbrPYttjNp fGFpKmt8+eFh64XTh+f2vbV8qZt28jyIb6FOO0GbDByTm9E4ksMZe3NGvnZ6 9OzXKr87qMi+sY9O1k4NzyYvA/uprB53yqvKVDxOZpo9P0kMURbmNvfLfHPN l1zXzi5SjjBHDzl8fiJrqmtnX3o5ZqfKtYof64QXFVdWYYdU3MIL3f7SsJ2g VQaOyc1oHMnhjJyPunFGzi1EeRZhLUFopyoG9lNZPa5SO03M42Sm0fOT1jkp 3b7QtSseBtFHor/Hly4I6fQTVrlutjDduFn8h6cizjToPvgf1WsnaJWBY3Iz mkZyOOPRj1pzxvIt7LbmUqkqwgztVMXAfiqrx1UN807N42TmnJxdedith3DN LlEJe1aSdpakcoOoVfcWarYTtAr7gYduSB3OzCDAGYUfteeMhc7oqHCqugVo p+fB/VRWjxN/f3oeJzPtrNMMZ5pZ2Yyy7sJ1sqik6a9eamd3D8+Z7QRnMXBM bkZrK6bhjJ05Y6adNh8D4VTOUxwC7VTFwH4qq8eJvz89j5OZc5+fZLmlohm3 9u9u56+6vMlvp7YzXFMZtvPub85t18K7cTtBC0xVO8EZO3bGVDspqvqHpJ88 nNFx0i1AOz0P7qeyetyR6YWT8jiZaf78PHrOT9Fjw3ag7iFN8NnSoj/XSJWy drIqFD0MWjZoJ2iN6WknOGPFR+05Yzbu9OGT9SpZ68125eAA7VTFmLVThx4n /v70PE5mGj4/Ua4/nHRvPeTWVnYfrlkhuIqdr/3db+///lRsp3azzV4Pe3h4 6rYTtMnEtBOcsfqj9pwxP98pq3LDqYh19BagnZ4H91NZPe5ozm5CHicztZ4f f2te3bg+mypf+mV6CNfZYsnic5tv5Cfrh5/duICGs1ar2tndw1OrnaBlBo7J zWjiic+5dStwRtFH7TljaeESK1YzuzScr9zzptZpRTs1O5u8DOynsnqc+PvT 8ziZqfH8hLa4DINGWgWiPBWsv2XREXNt/eFgtDxo5F+WydJRVq2idGs9PDy1 2glaZuCY3Iwmnvj8DGc84RZac8byou9cbUDBxKcT1ky1cuPQTvWR1eOO1iiY kMfJzM7WldOen3DB4yJaV5JmM8uC9qtjXHKN0iBcC2po5MuiRh/n99LxPccy tAu2dLR2O9vscWq0E7TMwDG5GU088RnOeNIttOWMnII5jw/JxCf+KzbrRIrz Zv29a6VboR0WCRTeeKOzycvAfiqrxwnd7Xl6Hicz2UaWFanJ5+QHT+quZ3Xa Fe3NfVje5DH6Ob7TNDXzX9+7f2PFCU0m8A8XLQo/Yg92/EIXbsTz403UwnT3 KC75jXVy1VCTMizxljrCdoqrpGYVvU6/hZPbCVqG/cpDN6QOTTzxGc7YpzPy T55NfOKdJ9uqQ1sne3GE9lkurzfmMm3AXPvza21peeXf6qCranI2eRnYT6X1 OLG7PU/M4+Rlv7V0tqkfZxPDiODBeGtGX2MvO5yfRV1Z7tesZOgsV7w9f5VS Kbn8roLljwrCtdi8/HtW0SLFNS+Cdu6ywdqQdJ/EZAue5IDC/Lp8Y06/hZPb CdqF/dBDN+RkmnriM5yxN2es+OmyXngevWHnr5sNTGWXDG/nMVc/sLC5vPDG G51NZtgtDHBtmT2uyt2eJ+RxUlL89U4kr0VzeyKHrhrvDMh2bVbU8E+73Bhg ES14J6r4KIU9dYpmbNzys7137dzGz4VRwQxBO1OL51aYsqUBeYL3vv971i2c 2k7QJswUQzfkOGd74jOcsXtn5LYnPXkmnPLk00BJFaDiJaMGB7a5y7eAf6Hi G/3pZ5MddoN9XnQcHlftbs/kPQ4AMADMj4duCABACPwUAADkATEZAPmBnwIA gDwgJgMgP/BTAACQB8RkAOQHfgoAAPKAmAyA/MBPAQBAHhCTAZAf+CkAAMgD YjIA8gM/BQAAeUBMBkB+4KcAACAPiMkAyA/8FAAA5AExGQD5gZ8CAIA8zAAA 42HogAEAAADaCYAxMXTAAAAAAO0EwJgYOmAAAADAPAqCwKb0gE0BAEAeEJPp AZvSAzYFAAB5QEymB2xKD9gUAADkATGZHrApPWBTAACQB8RkesCm9IBNAQBA HhCT6QGb0gM2BQAAeUBMpgdsSg/YFAAA5AExmR6wKT1g0+7ZufYvhja/MJyn oZsCAJCcjmPy3jHUGZ8LzfrMO+SzpV0cfPnK8sYSzx4959dbQ1NY2xXNuLUs 290/P/sPb9d33LtuE/Sz9IBNu8P3nDtTZ3HqDO20czdvjGMO/uS8uTLeuXu/ 4UUAABLQQ0z2vfsbfZETQgv95t6rihyB/PhJV2P1MddGFGf2Wyu8U0XVf3K8 x+hP/t59n5NSIsXYJuhn6QGbdsYXW19o+qsztZPvfVhr6mnBaudaK1XR1tVR EAAgMT3FZP+TtZzXiU3+zl4pgQgx7velT/YfTW0e6pPVJgk9/oO9ihWLNaTK Ys04bHOgBu/fRPoJ2gk0ATbtmDjgNNNO/n57oymLlf3AiT6730zOSFR8yFwz Px7ECgDACOgrJmeh6bQE3DfXfDlTVvauHI2eHOOieJ7cX1TDGSoUpTfIa3PE 44P1Shm3diKfgZX3BqGduoaFkZraKVFBS+sTz+2DOKYJnhx/76zVGeQTAKOk v5jsb81FrJ6Uhbk9MjwUfvmCN4Aj7bjTF1t/cSTyhoNvfxizdgohn4GV8wah nbqmmXbyvc1KVZSlxRtyCiKTtVQqXpe+OsblbHZpOF8bNRkAMBg9xuRoKCnp jky3snvxXXMxe2m637pvVUswZai8sh4eRV/a2a+XI9dOIW1lYCWVwa2mmFsC 2qlrmmin5DkRRKrk8a4cat7fG4HqrgoaAAAZ6TUm72w9ydu90O0v4u9Fr2PH 9JVksNxNTgkc4Ls/rQhop5YysLKmX59bTDG3BbRT19TXTslDwh10iqaOx/K7 Ok0fv1F2qLoBAF3Qb0yOx6gjhaHbO9G3QolVKa7CRcXXaZYkkiv6dVwE4PBc Uc2WOFPm7913RjzQof/bv6r/NCtTjHKepYk+4pAbVQvLEry593gvkk//x3pL QDu1lIGVdtzpub0Uc0vIpJ24U7xO9p3QeX82tHRYr4Hz/lFTC5fOy+zSjDWR 2xZXv6q6abtf62qn5Ak5vES0jO7gBxKdOhpjnwkHrwAAUtJzTE4DRUWsiOZU V7zCJx1uuqrF9+7XcQwszLos1mwJ4tunaGYmI9Bm/3A3a1Y7QNFutpzOOhZ7 ghU0pVsL5zbk4qSiGRtuj9A5vdiUdAY2RK4b7NlPj7Fr6DtC5y0MvJzgvF/S U804Q5TZR1zttNuagaeyaWyPnmMZmvq99l2ddXZsZFJo93Qg69hrV/K9EyQ6 AEAaeo/J6Zxq0TB19AovDCPpRJTCsFU214gpLnaVJPx+/+cfr5ZBhH/au1Y4 YKW+tsNxoXjtW0XADDrQ708eT4hX3MzyKNp64woH2DqiJ5tSzsBGyHSDkmmn 50a+k3hl0XnZ1DImQk503ifPuuJrp+wjzqBQJJwOlsXF845qaKfja0NO1U7s VF3mfAEA7dJ7TPazV0hOrIg/Fb/CJ7mA0jsaGyIoRdHcrBXRbEzWP3L7vlCV fV9nPMFPwntRQOVKZfZBXzZtIwMrY/q11RtsCfm0U33fSa1QlBuNnbeBdkqC D2+GUjbMeJJ2YveuWZ7gKydrJ3bp0Y3NAjBdBojJVTNJwlewin4qTfmVDhRG 0TR8VYyHs/6Rs1I4vFyD8YRAD9xkWzykLHRr208KrzebnpuBlTX92toNtoeM 2qmu7/C1k3CM6Jjz1tdOyRgXX+jWmivOHoyKYHWydmKtRdoOgNEwREzORvvL b6zHZ4lH0a/8HnpUO1WFL3EYDITcZePxhIMyQRXdesv0aNMzMrBSp1/buMFW kVI71fSdxHmX5jb/3aPaSeS8tbVT9azsOtrppCLkJ2un7NJVw5sAAJkYJibz Z5JEY9fq2qmhLsL1MlY2KNFEO2UzLkqjB0EjL84cT4inobIlRdFFBGX0WqRH m56RgZU9/Xr2DbaKnNrpPN8pOW/X2on9kV90oo52OmmkqIF2qsgAAgCkYqCY nM0uyLREvVf4nWsHYVdRNOPW/t09Y9wp1y/nI2Hwxx8u2xlPKK1ZpjU3pmkG dhzp1zNusF0k1U4NfSeeujYPnffub85tP+NOrHzB+dqJha+qwALtBABhhorJ uRX98Wt7FIRPqq+bbIGRW8J2Vs4uhK2yYd1r7WGKvXNjibvmwhK8rnvbfm3a NAM7mvTrGSnm9pBVO9X1Hea8huXENb16y9lBOwEAWmO4mJzNY4l6uhNf4eMl xqXM19naKQuGSVcY9MKX9ZJre2e9rkxS5LJO9Xdqr0XfNm0nAytx+rW1FHNz 5NVONXwndd7CrL/+tRO/ZH2jnF3L852gnQAYC8PF5MJMks399eL4npiienTn a6dsHCzSb0F3cFVzPCGIzC+PHNJ0p/a69G7TMzOw8qdfz08xn4vE2ulE32H+ LnLeutqJ2fpE7cSMyE/7Yq44AOB0hozJ2UySiOPTUUT16FrQTrkKda+s33/V F3XHE8K32iOhL71fWjm7kKYZWDnTry3eYGvIrJ1O8x02zlxKmTXWThVfqF5n x69COVyNAq7gBwBIzaAxOb/j6ilxg22kVXp1ZZOE65aIKbYmnb38B1WtP0wR ZwQqh86S1M/R4bVzGcKmDTKw0qZfuTRLMbeG3NrpFN9p33kFAiZfn7Z4bO5l 7WC5a1YH9aQS8Uxpib8sWA1xiGhtKQBAXgaOyWyU4KTqgrn+K9lsNy4C8J2W 7A4ahSnfu39j/T16dayXJctCa4NV5+lsCkVb33u8ckbpLrfdb5g+hE3rZmBl Tr/yz1o/xdwmkmunE3wntz9gUpIrLg5/hvNm1cBSp/PDeLBcXm/MZfqDzbU/ v9aW8Tyi4pINNtq5dzfGKy3dzy4qVv+jvvihMiKdsJEKmyYXT4oLS7/+eMP5 cbAnCwDjY+iYnETUE1/hy/vthnFpZblfc+NXs6z4XrYlKAvXR04fn6fReEJ+ A/dwY5E7hymoQOC9NcM6mXNt/YGnq1pmGJvWy8DKnH4VUDvF3CZD++lRjvuO wHl32Uzp6GdNCr+f5Ly5JZDM98KJ6I9sLndYz998m9sR6TEQZ6VNJ0OHXW0+ 37NmlPyXfzeC6Vv5r7Ct+mIK1fJzX4ufqz7eqgAAbTF4TI4i6unjPGwjszgq 2m7cLSaRNgh6wZ92+YUwRfjLkzOarzrfO+ZN1EcHSulXy/q5UBIzKmRj97Up 8EA2rZWBlTn9KjxrzRRzmwzup8c57jsC502GZNlAUC3nTRYaJF6WFD6IzhDE AoEAikanUgGVfi16wEpCq5JU81Q9CfutFW8uELRtw92l8Ui1cwCAnIwgJoOa DGbTGhlYmdOvYuqlmNsEfiofqZY+awQyHnjHoBMAIwMxmR7D2bRGBlbi9GsF 9VLMLQI/lZEkK3fGzLdY5Pe4YBMA0AqIyfQY0KZ1MrDSpl8rG10vxdwa8FM5 8b3NKtyQutmcuni+VjrFCwAwHhCT6QGb0gM2lZV47V6TpFukwwUTyAEAcoOY TA/YlB6wqcTE8qmeCooGrF5AOAEwUhCT6QGb0gM2lRzf+7DWXqi65R5P3u3c zVq7EBSCAwCMAcRkesCm9IBNx0Agit4Yd0d3r3tzZbw7QWIBAOQFMZkesCk9 YFMAAJAHxGR6wKb0gE0BAEAeEJPpAZvSAzYFAAB5QEymB2xKD9gUAADkATGZ HrApPWBTAACQB8RkesCm9IBNgQzMAAAAAAAAD2gnAAAAAIDTgXYCAAAAADid LlN/AIweeAo9YFN6wKYAACAPiMn0gE3pAZsCAIA8ICbTAzalB2wKAADygJhM D9iUHrApAADIA2IyPWBTesCmAAAgD4jJ9IBN6QGbAgCAPCAm0wM2pQdsCqjz +GD9aWl9HroZAJwEYjI9YFN6wKaANv6DtVRe6PaXoRsCwElMJib7e/e9Zerq heE8Dd2WjqFv071r3xqaktymohm3d47nD92qLqFv09b4YusvZke40DC+IRX+ J2s5n81Uw9kP3RQAToJ8TPY95y7Xz86gncaNv9/eZNbMoWhv7r3HoZvXFaRt 2ibR8MUx6TTD+IZUPD5YryKjXVke9egMqEA8Jvtbc7kyLStTT9BOY+ZIz6iu nT3N4SfCNm2Vb6758qhymikre0fzORkjOaeGdgKjYSoxORBRCwXaaeTE6ZiF br51kiGmR8+xDG3OOkXVuCc56E/Xpq0SuvmFqpu2u+N+vLNXQRRQdJv7MRiA JFs3lRdbQIbJxOTPlnYxEfekatPo/fTScL4efmCvFrTDL1Wbtovv3ixXG/HM t1h7I2EnD7utebVYvTG+j4LzwnQxHAhGwmRiMrTT2PF39g+X5pYfXHe2TnrY n6hN28XfOb/9vSJpGz8kSNjJgr931qq6dna/J0kBzfKGbhMAJzKZmAztNHaC QLsW93psdRW0E+CChJ1k7O8N9btwGPnJMaLYDNOAETGZmAztRJu9Y6iE7TtJ m7YLEnZS8dUxvktmJ6aDxkR9F9BkMjEZ2ok2ybgT1VfXSdq0VeIOGjNqpCDN 1sUJVs/SomGnhSgjD4B8TCYmQzuRJllHyZtJToIp2rRN4oQdemc5YNm6iDRl h4KlYExMJiZDOxEmeo0NXlyX1gPRrnF6Nm2XeFjypel+G7olIJeti0i1E4qK gzExmZgM7USYqGdUXlkPqCsOeCBhJwuPnv1aLdSwffKsqxm0Exgbk4nJ0E5U iQed5kvrE+GOcWI2bZe42DgSdsMTlmi7WJrb/JxEVgqe5gpZQJXJxGRoJ6KE cycu1KqKiBSYlk3bJZkLh4Td0ORLiHOAdgJjYjIxGdqJJF8d41LRbrZEt7Fj TMmmLeO7Zlh0Hgm7gQk3/L3gzEhMK7NNIDIDSkwmJkM70SPafp3u/r95JmPT 1kHCTgqibB13RmIamSFuwaiYTEyGdiJGPOn0te2RnR+eZxo27QAk7GQgzNap /BmJ6So7bMgCxsVkYjK0EyWi+eGkF9aVmIBNOwEJOwkQZesi0qLiVKvaAqpM JiZDO5HB329vtPJqndynzrVBbt8N6jbtiDhhh31YBuSwKEGRpKj4FAIzIMVk YjK0Ew2qhdPO3ay1i5V4y+CxQtqmnREn7BSCz8NI2LnWSq2abJZs0DyNwAxI MZmYnGqnCQRSujZ99O7faMqsGpKD/3Rt2iFxwo7k8yA/vudYRuKsgpWw/t61 dDX1Z0Vb39MuNAJIMY2YHA1WJD4618yPtMvXErVpNPh/RDfNqCZoiNq0U5Cw G4r0RbVAYbo+myE+Ef8F9KAek1nB/wPoLuugadN0XsQRiI4r0rRppyBhBwDo DMRkesCm9IBNAQBAHhCT6QGb0gM2BQAAeUBMpgdsSg/YFAAA5AExmR6wKT1g UwAAkAfEZHrApvSATQEAQB4Qk+kBm9IDNgUAAHlATKYHbEoP2BQAAOQBMZke sCk9YFMAAJAHxGR6wKb0gE0BAEAeEJPpAZvSAzYFAAB5QEymB2xKD9gUAADk ATGZHrApPWBTAACQB8RkesCm9IBNAQBAHhCT6QGb0gM2BQAAeUBMpgdsSg/Y FIycz5Z2MROjaMat9d7d+0O3E4CToB+T9659a2hKzkPvHI+0g9K3aYK/d99b pq5eGM7T0G3pmMnYtC12rh08GgvWM6v6tWW7+6GbNXl2W3OZBOPMbQNHfmdo 8zhAr+9ph2dABNIx2d9vb5hqKr7jvLn3HoduXleQtmmI7zl3OT08g3YCefYf zaAjDl6TrPQtKXhirPCBUbSbLUY2hsWztDgI6/Yu//f9vaHGLn1pOF+Hah0A J0I4JvsP1pInnBLUtUM0ihK2aYgfvLmuTMvK1BO0E2D4n6zlnNf/+ntnrQZd 9tJ6oOn3o8Df2avIbV/o9pfiR0+edTXjyioA5INuTP5i6y9ms4VuvnWSIabH 6OVzng3jG/ckx/Dp2rRIIKIWCrQTyJEIpNnCdA8FUvLAvDTdbwM0DYR8c82X UfRd2buyhZ4c42Iyb0Ng7FCNydGgE2/s13+wV+ksCKIeStWmB6SzT4naMc9k bHomadesWR7n0/iBudCsz703DESw9x2OuGVDUgLpC4BMEI3JgRv+cGlu+f63 s/XERa8sj2CnS9Smh0A7gRJ7x1BFwxppxw3tNBi+a0YvrsqCE5y/OsblTPgp AHJBNCbvnfWaEzwT4nQetNPYgXYCJdJxp9l8aX0q+3/80qS8sh7IrhORG2Yd Tto0m54KA4ExMMmYnL6cEu1zJ2NTaCdQJh3ZCBM/Kzs/Kzwe1uBpKtAP4gmK vvdhndQoWJpbzBMHI2CSMTkZd6K6mmMyNoV2Aoew1E84+qSZH6P1IHFZIfaf YAjSyRK5wJuWaIu0rm7aqI0JxsIUY3Ly+kO2ishkbArtBHjk14PMFHX1y+Z6 qaDo4sDkpoKXgaYF42N6MZl+mZfJ2BTaCQgoyKcZ6hJIQDrLNDeNPyxymww6 zTXjHQadwIiYXkyOXJj0dMTJ2BTaCVTAloTE40+YSDMobHVzuXzEo2e/VmMT oeo7GA8Ti8nxoBPx+aKTsSm0ExDge/dr7UL762bzl9yuTKXZ46A3WMKOV38g KQU/I1yvGNBjWjE53DLpQl1taM97mIxNoZ0Aj3g/u3TTJd/brFSmnyCfBoGN AXKTp9luLFPwZUCDKcXkcAHOFIaFJ2NTaCdwAHc/u1hNJck7yvl6SakqJ/5c 0E5Ea+4BekwmJj8+WK8Uuvv/5pmMTaGdQIk0N3TYR+fkE9XiJNJSWU78uaCd uAXhAZCPacTkaDqi+tr2JvG+OQ2bPkM7gQOSR4L/RIQp+6lsHi0TrJy4ajjc 2UxpsWLhwBQA0jGBmBzND5/SQP0EbBoD7QSKPDlGJJ0EO9alnfgEHhiJYAk7 0ZgS07TUV/EASlCPyf5+e6NdiJYnB7Lq2rC/9N2ojqFuUwa0EyiSdtOiJyLR Vhjc6BG2S44gVZrVgSdccw/Qg3RMrhZOO3ez1i4IptdJ2zQPtBMokY4s8dVR PBtKNOsGdAGTRi/0w7fUqJREsgZyMnMqAA3oxuRH7/6NJtgDgEFy1ihdm5ZI tdME5pdOxqZnkySAeNmf+KNpLBiRg51rrdQk1BaddO/a1rWepOoUVbdQVByM C6IxOatVWwnvVWj8ELVpiWhQMdHG9PfDmoZN2yEt6JTf5uPRcyxDmyvam3sM bvRBsai74M1V1a8t61cHFgEjhGZM9iztuHAiO15B06YZ+WowRcrbPdCBuk3b Jtwp7WeD1XQK9/swbu8c2kVxAQC9gZhMD9iUHrApAADIA2IyPWBTesCmAAAg D4jJ9IBN6QGbAgCAPCAm0wM2pQdsCgAA8oCYTA/YlB6wKQAAyANiMj1gU3rA pgAAIA+IyfSATekBmwIZmAEAAAAAAB7QTgAAAAAApwPtBAAAAABwOtBOAAAA AACn09ocKQAoAk+hB2xKD9gUAADkATGZHrApPWBTAACQB8RkesCm9IBNAQBA HhCT6QGb0gM2BQAAeUBMpgdsSg/YFAAA5AExmR6wKT1gUwAAqMTfb280ZTZT X9veY9cXQ0ymB2xKD9gUjI0nz7qaCbmyvKfke45xwf2KZnnD3oEs+Hv3vWXq 6oXhPA3dFqnZO4YaPzs9/FSIyfSATekBm4KR4nsf1to8fX7n2vqD5x9+6/HB eqUk31FU3bTdXf9NlQ3fc+5uDS39XfoQBOMG407gLGBTesCmYLxkI0vC3t/f 2atQIyja+p6nrSaIvzWXK9OyMvV0jnba/WbefW6zeYfsP5qhSFbU1SYxof9g rxaRGLbcPTWrIibTAzalB2wKRoxnafHjuzBdbhe6vzdUZaYszS2Gmw4IRNRC OU87fXNNTbO61U653GuSkM39RTWcfadX7x/EZHrApvSATcGIYdqJO4UpHp2A cBLy2dIuztFO/oO1VC661k4YdwJjBzalB2wKRkyFdoJwOs552imRNN1rp4mB mEwP2JQesCkYMSLtBOF0Es21U26iPrRTyyAm0wM2pQdsCkYMVzs1EE7hwrOf jWzVnqLq15btcmfSBN+10lnWimbcBl/zP1nrX8MGlMsi5GfjZOvcBZJj59q/ BG1IhYy/d21TX0RfnmvGu1xy6tFz3qYfBU39yWm4+KuZdtq51ip/J7l7qjhP eq3iAYUfgVnz8KPQQNe6ylYGVhgo/hn/EB0e/IbvjDjfp//bv6r/1LwBgTHC ufV9TK9CTKYHbEoP2BSMmEPt1EA4Jbmnxcp+CNWJ792vY2kU9JT3xZ4yXqu+ 0G/SNXt7dxPrqLx4S04448xkzj7Kdc1Jv5wXIDx9oq6dUD7ttuZSKX/UbO38 WTm7VCeePu60czdrdpuKdrPlTFX66hiXmS1ihAaaa+ZH9vuG8srU0x8taNWn vbPO/YYvdPsf9RsQlsDKGQfaCTQBNqUHbApGTEk7xZ1svVTdF1t/Efakup0d 43+ylrHCeWm637LvRgvTCt8MiXrbQtKQVe887GrZR0xyJA1gXBibj+Yfl8lA U9B3W+l4S9j7b82rBRto2m+tdPRpYW7rz5nuWTs958ttCa75zTW/L0jW1BZF A6UrBJWVvYvvu/QzXnz/5x+vloE6ekp+wERe1mwAuxC0EzgD2JQesCkYMXnt lIxOXBrO1wZnKPakQQf68rCv9F1zUerEY3a2vmysnZJzJ3WoZoelqHIfzRa6 tS2cMbh0/JmoSkMV/WunYw0Otcr3Bb2aGKgkDvkGKv6Mr6wH3lhc3QaEMGEG 7QSaAJvSAzYFI4ZpJ/WVns5WUrQ396cnsPjaia9wErXA6ZS/2Oa787RTNlWK I2SqlhOeU6NpCO2UJMVmXJUbqtOipIn16oF2Ev7CaasqBuLqNSBCJNU6ATGZ HrApPWBTMGIyUXG9yc8COn3+T5wSKqf5+Aon7cejOeIb/kzy4uE1tJNAxcUH pbqKU8bqHP0ziHbKfsaDEbwvtn6p21+K344NVNKrR7VTVavqNaDycl2AmEwP 2JQesCkYMYUBmUfPfq1m8mllNdm6Lt0eNzlLabUXmwcVXyLcHo/XlUI7VcJ+ xmy2UsTO1i+Kf+EdXDRQE+1UvwHQTuAsYFN6wKZgxJSTWUX5VG/SeFIiICw7 cPc351agcLLp2ZmCunFKO+VBO1XDZiXlM2vBH3+4rJrxvgtrNqhKVBfid/eM caf6DYB2AmcBm9IDNgUjhjMRKN3yPpFPp2wB/Og5P8WdspWoILHCyX0/p5/m 2vpD7jLQTseI9xmc5SZs8ydpxzADrTfJWOJZObv6DYB2AmcBm9IDNgUjhj+J Or+uf1YuFlQmKZdUrPZTrZ2SA+NhECafltYnv3w4tJMINvv6RTy/yHfNy6XF s1NqoMKnZ2unGg2oulwXICbTAzalB2wKRox4AZrvbVY5+VRe2p9+Ky2fWKzj dJJ2Si5zz6otZuuzWEoI2klItI9weHw0YTtQMle8SdrslxQZqLF2OrEBRy7X BYjJ3RE8Hi8abnx9FrBpd8CmANSmYvF+Yc+1WakGdQqr23NleXnnE9Uo+OsP nO41PUlOgYh7cGgnRvq7Ka+s33/VF3HVdMF3yi1sQTud1oAjl+sCxOTuQD9L D9gUgLpkRQNElSGzPVC48oltslYa1mAlgMr1neaHhTFZx5oTNoJV8Plk4kEB orFpJ0HlpSZn+IOqCiZp1zPQ80n1nWo1IDkrZe1U3BIoWitRXvzAIb+t42wR rTg9dkw/h3AJ7tHKb1gZ36d1yo22wtD9bFpOn/eOmQGb1mFomwLQnGzr3Yre n9WRjrxL1a2cq7JJL6wkVLx77HeapmYKx/fu31h/f4ovl5/XlD9J8e/ZpiHp ZPUoYiyXYR2qtDFz7c+vtbQgObsXft1yUSnsbNOQ0tDZKaTKRDlaGYAHa1W8 0V6Yvvzxhj/XWkDW+JeCSdrZTitpydPHKPLyDfRcXWK0SQNiypOjOqXHmFxc WJGjusBskhBPy4AkA7yVVUH6OYTHY/BwaIoSFRTZpWMUu6DfTXfTrjZ9Owzb z7L0dIV2gk3rAu0ERko5JVdY6ZZ9i9M7hK8n72MFlUUVRuTImSqLJEs82zz9 41wzfrETZ4/3tz28erZvWu6yN9v9YzqCMYveud4mO9PFWxgn3yuVVshv/lua 956vycBNSlb9frlfpu6x8QmK1a6anCSZzsSRi+wbfAN9ze1Tk/vF8sOMJ9VH Pd6A5+LcOcEOwm3SW0zm/LaF35mfxEx+jVK10lhIC/bB6ecQ7i3GExrZQoNi fif2LIpjiXnyfirQTrBpA4a0KQBNeMrJj0Pywy8s48MlTvfEA01xbMkNIKdi JrcuPpnv5HvOnXXNUm+qfi0YJc4txMvKH0SND96XsmMEtxONmxQlXPEe2Vyv AqcEDfEPWD2kfwirdnWk0LqYMHJWD+YIDJTIpOTdU3xTx4bjjjRg7xiq4Mnp CnaZ7i4REY/p5QR8MqbH9LBS2JQ5JumIDz9KhuaUw7WK/RzCJTlPZq/y3Jhw 4HFBup+NXuL+oKoV406waSOGsykAAIAy/cTkaNCJt3F2fgi0nPhk61I5Ej2d PFYSov0cIiB5vxD3s2HH/UfC/Wxi5b+9E0+YhE0bAu0EAADy0EtMrqzink0R LI3asZWJvAlybJC0MCuvn0MEpGOzLCd7uCbryTH/QrWfDYdoXoTjPFWLTWDT hkA7AQCAPPQSk/fOei1eICCo3VGxZiGEtyiyn0NEZCIwGWGb0nr2KFsXT1qr 0E6waVOgnQAAQB4kiMnpLK9Czs7P5ufz58WxuWEs+dLPIRVk6zTjFa+Pk+ln CzlZoXaCTZsjgZ8CAABIkCAmJ91TcflhVtBDUP/h8Av9HFJFcX+B+ffad/Mp 9LMsWxf/p1A7wabNkcBPAQAAJAwfk5OyV6WZ5NmSQ0EHly11TEVXP4ccu5tC VzubqfpNX+UTGf3aNJetixFqJ9i0OcP7KQAAgJShY3K5fk4Km5QiKtGQKxOR 9NH9HHICrJhGgqgcXFf0aVPOCkqhdoJNmzO0nwIAAMgYOiZHCTtOrcIx97Mh cRnbrK/tocwpoz+bhtk6tbz3AUntFDINmwIAADjGoDE5HnQ63Hjoefz9bHRw qdjsScXnW6Avm4bZuovDIpNktVPh5ojaFAAAwHGGjMn7e0O9UFcbXu6DrW8S 9YCH01r6OaQG0Xr2ze/WSu23q+3FppHu5W5uItROsGlzoJ0AAEAehovJXx3j Upz1OLoYivWA0QbN/R1Sg7QWULyZbPI7nzg/+Rz6sGmoe1/wBgzPWWcHmwqB dgIAAHkYKCYfLM4qk1XpEXRMbHiBU9iny0NqkKujyHYJERS7bpUebCrY+1JA IqJg0+ZAOwEAgDwMEZMfPfu1ejTTwbaf5m8pG1c2mBWqkfdzyMkUa1CzLvuU HbTPQlbtBJs2B9oJAADkofeYLJ4nU/5ivIW94KU+3SyjUNygn0NEeG+N4gSb Yj/LckknbAVyHgP3sxV7ssCmTYF2AgAAeeg3Jvv77Y12sTS33Okhgay6NrI0 Cku+cDom3zWjajultEs/hwjwrGUxSVTsZ9NpNuTzO1V7AcOmDYF2AkB6og5O 6W/57fPetW8NTel83Bsc0mNMrhZOUfGci2IflAwgKNl+HwnJ+z5n6KCfQ7h4 llYcTyv0s0mq6PAq7SOxdoJNGwLtBID0nLWGtxa+51gGW60C7TQAfcXkwrok EYeTe6Oy1bNS8UzuH3s+hEM0zSa/cjDXz0Zz48NnvGJ6fGtIrZ1g00ZAOwEg Pb2NO322tEtNU9OoAO00AL3E5Ghy+BHdNBOkUZKnUdHe3IdPo793LV1VZurK ckXrwvs55AA2RVnVTeu9u/fjfvYxfUFIT945kmsn2LQB0E5g3Ox+M++49dYm cPWu6G+tCjikj5jMOqBqxJNGfM+5M3WV9WJ3x7di7eeQA3aufWdZ13p+69jZ XDN+bnKypkivnUJg01pAO4Ex8801NUGtWvJX7w62RQK00wAgJndHcV5xf8Cm 3QGbAlCXKFcuqvNP/OpdAu00JIjJ3YF+lh6wKQD12H80tbl4jyTSV+8WaKch QUymB2xKD9gUjBHf+7DWomJrQ6iXYa/ePdBOQ4KYTA/YlB6wKRgbOze/ZXae 8gL+R8/59TZbca+o+rVlu5Vq4OghJ15959q/GNr8gm205NqmHlWAC+c0vnOz JbTBFd+mHwWX+8nhLhIRF1zKVxVQNOM2aK3/yVr/yivk4jl3PxuJ6gtY6OZb 3uWgnYYEMZkesCk9YFMwUtK1I4KRn/3WCgSJqt8kKy8CifJTvC5DuFN8nUOE V09ETl5P8eRWUoFktzWX5RI7hUIEgeh6fyssuBSv+V3oN/fJ8pK9u4m/fLCg xvc2K/VFKtuC075LRJRyWBoR2mlIEJPpAZvSAzYFI6VKO8U1bA/qrUX6QSCf ah4iuDpb3c+00+aj+cdlplisdF3tC93+x9a8WrCBpli5RWpmYW6TK2W7ZPK0 U/TpQfXCr45xWdJOsXBaWp8K97y/N+LGlO8a2mlIEJPpAZvSAzYFI0WsneLq styy/GxbpdKntQ+pHPVih4SSa32fLzmS+2i20K1t4XLpnpizhekWVA6/4FK8 D9Rh5efwPMu8dooO59TaZftm5tRadHPQTgOCmEwP2JQesCkYKeKsWTycIthZ ko3k5Adb6h9SnTFkteg4W6iwsoScPc3TC5UPYyKnIGaSq3C2M/him+/YyYUS Ky/kCmoN2mlIEJPpAZvSAzYFI0WgXpgeuLI8bs0PpkPYgQ0OOTbbKhVIHO1U VeP3s6Vd8A7ji5l0//FojvhGNAeeHVtJ4YrQTkOCmEwP2JQesCkYKQL1wrbN FQmhbLAl1QsNDpFCO6Vbk6eouslZRZjcXZ1NhKGdhgQxmR6wKT1gUzBSBOol lR9CIZSJl1S9NDhEDu30nJ9hnimom8KmTslcKV7OTgS005AgJtMDNqUHbApG yjHt9NJ0v/GPTIVNKicaHCKNdgrJaimkzLX1h1Q/pecszz+vANppSBCT6QGb 0gM2BSPlWJUAwcTvZyZs2OKyBodIpZ1idmH1zUxBzdOKBCwjKVaGz/7ut/d/ x3wnOUBMpgdsSg/YFIwUgXph/X5p3X1GOsWaaYkGh0ioneKGevdrrbh0jk10 nylL64F/e5+sH37GOjtJQEymB2xKD9gUjBSRevEfrKRUN6ei0XM28TuXw2pw iAza6cn56w+cgbJ0GI3tB8OW4xVyednd7Z2/LFHfSRoQk+kBm9IDNgUjJZUE h4NFUWHtSCqUK2lnn5Y+qn2I+OoRPWknY86ZAZ5+mZ2/uBxP0QyLTSaPN8O7 QF1xiUBMpgdsSg/YFIwVVoU7HiwK01U/3sQ5tf1HM9ms7WCPlXCISVFXm/Lw S91DKq6e00f8ot/84uH5HVhKK/5Y3q0wIyu6yqHYi79cVHpsYI3DYTV1Tj0r 0BuIyfSATekBm4KxUqpuNJtr5kemAXzvwzrWQuW9fS84wqnBIRVX9x/sVZol K++0m9/8d7Gy8/OPHj37tcq/l2RPvVlxW71Uoc014xfbja+yczdrTTnMzeW3 0isKp4NbE10O9ANiMj1gU3rApmDEsOpG/MLaO9f+xdCYwslrDBF1DuFcXVDE O8rBZUWiCkRDTGyjlgKq4fy/dJVc4XTxcFA838n3nDvrOtVFiqpf3zlcbRg0 2LVvjXQqeTF5l36Dd7ladTXBuSAm0wM2pQdsCgAA8oCYTA/YlB6wKQAAyANi Mj1gU3rApgAAIA+IyfSATekBmwIAgDwgJtMDNqUHbAoAAPKAmEwP2JQesCkA AMgDYjI9YFN6wKYAACAPiMn0gE3pAZsCAIA8ICbTAzalB2wKAAAAAAAAAAAA AAAAAAAAAACT5f8D7Ab31Q== "], {{0, 255}, {788, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], BaseStyle->"ImageGraphics", ImageSize->{633., Automatic}, ImageSizeRaw->{788, 255}, PlotRange->{{0, 788}, {0, 255}}]], "Text", CellChangeTimes->{3.633829062120336*^9}], Cell[CellGroupData[{ Cell[TextData[StyleBox["Kui siset\[ODoubleDot]\[ODoubleDot]de \ v\[ADoubleDot]rvi toota x tonni p\[ADoubleDot]evas ja v\[ADoubleDot]list\ \[ODoubleDot]\[ODoubleDot]de v\[ADoubleDot]rvi y tonni p\[ADoubleDot]evas, \ siis peavad kehtima v\[OTilde]rratused", FontSize->28]], "Text", CellChangeTimes->{{3.6338283969663677`*^9, 3.6338284042827806`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztnb+L3EYUx0V+QJr8ASrDttf5H1BSbHOpHNykEHghucKF4RIUtjhwkU6w YDgIHAgWh4DBTDhwAmZBGEKaBeHGhEWdMYcaF2ZRcSxGbDSa0Z52rZVmRjPS 7Ol9wMbGvtWP/Wremzej9/1q9PDuj58YhvHTF+lvd+//8vXp6f3xd5+lf/lm /PMPo0/TP5ykv/5Mf+E/rwEAAAAAAAAAAAAAAAAAALoiiYJL9My1TeMERR+6 PhugE5YhGluGYViOh16GcdL1+QBdkFz546FhDB20iLs+F6A73gfusWEcu8H7 rs8E6JSl75jm0FtAPOg3HyJ0Yphjf3nIQohDP0tzCabtPrsMosO7oHe+c8eo YWCjtwqPPvTCw7tvhCReTDcaKGLa5/No1fXpbViGvnfmvaqYjyVXaFR2Idvc cfx3Sk4wWXhD03T8pZJPV07N3bMmQfeToFUUINc+ws+zG+xXwnXo3avVgcLR +0PgDqrPUGfIcDp0vOcBffxvbju5cZY77242VDiZdG7uh1Vngh/JQfa/Sh/K ZOmPU8krfGaxEg41XcwGhLIpD50Uk7jaicp5NJCRhNPReLY/tyGaVxYa1kQJ 6pKQ+sPjfFWwnpk+JmfH+zSMJ0RECi0XS5M0e/WcIbsGyE8tg39eVQQycjlK E/sDVkIcTCb778wmD29NCQUNpLOXGaMGmD5ZeWhYH7QSqokD12orOmxrAEmf wKoPDWt2JaQX+xIhsji1E5rTf3qRxcTh2L/ivAfqlEDHhL3PUfrlpdeDLhxr UJJVJm/Q6MgwR96i5ilMsoTAVKWBDBIaVM/0mZSQP18ls7NV5D+6+TcbRZyH V6WEbHa8r4SeTZgqp2YRsmuvKInmE8UayA6ThQb1WT1XdIgXiIyBdKRK4sUT Z4zC+Dqan9vmke295gyOipSQpDlEqk9zhCoHqeXCI9UIyw22T5yMCUblk7hR Ap7G+spWb8ngds8Lr9V8fg5vnhDPXcuko248nzhPFo3ugCIlZHfPfICu6mqM dIpRGoJXV+jBoCZJK2QIivTQTmhYC2SMeaQYPkbepP5W1x1egRLIgHA0Qm/q bx6NE6V34Dr0TtiSNHUZIyk8tlLw4VYCndHwlu92QzMLYmk/HrUGVlWVpshb ZA9KD4XLVsdcT6ICPdBsR31oWAvNIumIyvdTbSkB77Uw7SlzzKJTjN1D4Tzh e6ENG5uZlISqQhJ6w+pcRSICSqBClVLokBsdcGQ3+Vad8mC3NUdIP+fhsNGC BXe1uYwWQ8NaJDrEwblt3anJq5kPL08J2XzWeuTzrUTnK4CFa8FxYShlEbOZ HtoMDWuhucNo+t+cDPXNT1KWErIskWWyUH4ChfCQxoUTp3EmXIRxVXqXVkPD mlcJaRR+iKNn1eSL7/AylJBtVhnsqwemIrlw955nngDT4lIaF5wTlkkHN/U7 VbYhg5XiCnMRDiWkw++vNomeeapw8yRdvZi+FDjn5kqolsEynE3sQdUSXp7K puewioPHNuukQzHkDre5q7BaCaTUhoNvHM3PR6NNTr4dXuPXU/epUImpoRJW WW2zZgpSk9nSwvK9C//yrGmhTBokNLS6l6xaCZvyO855islYoapwelpQCPfh Gyhhe8ljL3UD7OYaedMM/okxc57QemhY10YHUpk3LedJsJOTx689nAUd2e6L BiXWBkooqrRqRKgbYMkXyrDsWP6DKpTQfmhIuf7928+NL+2/D3MfowzwFyqw nn7r6LsS0hDjOtxLqLeRXisBZFCgv0pYhuhMlzmjDvRJCUk0G1sm3r6yDGfu aAgyKNIjJRT34B3Zk39BBlsc9jtQXORb2pTuOjxcDvkdKEAmeC2pw/cdAG3A lbp2q5qAjpDlg7b2QgD6cuhtNAA5ZG+dQ7rYe8hiohZdR4CuyHdic+//BG4N qyh4jt/OwO3JoBFrbyHbQqB6AKyzHbaIjglQcgVwnoAcy4Q8AcCQ999h7gDQ rdRQTwDWUGMEcmDdAaBkAQLWIgGyKg0VBgD2LAE5PdrHCFRC9zb/BUroO1xK uCUmOzqTLwfk99hyLpBgmyZOWJVwKCY72sLQU4XsGCkuCeVdoXm6yYnCpoRD MNnRFrY+S7Q/8MeNphk7DzeGSQmam+xoC3vvNfp1l9d722nCxqAEjU12tIW3 /17erai8dTxpJKu47FOvBN1MdtRZQkhBzP0nf2eztI8KHRMUK6G+95puJjva KqGJ+8/GIrCs8Tg1gRLoNslDU/efNk12CBoqQULvbtqHE7PT6oe4frO1pm9C UyVUm+yo8AySpATt3H/IN56/1E87vZCOZwIWKvw0VEKVyY4izyAJStDU/aeY gafTsfHT2cXINO3JvJXqXSMlsE11JXsGSYwO+rn/bInBaK9997qhEphNdmR6 BknNE3R0/9l2nBdoFCmGuBJ4THZkegZJVYJu7j/ZODOwf5vNHhdq+620ixRW Ap/JjohnUCs2MTq5/2y/qUr6g7UnBkEl8JrsiHgGtaIEbdx/StcdaEtkEiY0 rCcImOxI9AySW0/QxP0nHzM/TlALYtDMV1rMZEeiZ5BcJWji/rM3SGHyfFtt +Y5PCaImOzI9g+QqQQ/3n6rEdX0jV12UIGyyI9czSK4S9HD/+chDZweqFKXv KLF7zQua7Ej3DJK87qCH+09JkCrQisk4kxI4TXbUegbJXoHSxP2HJgNl9Zk9 7zLn00xJqxL1SuA32VHrGaRICd27/9x8szc2OjTHKNssmmc4tZ/LcTmVShAx 2VHqGSRbCVq5/yRRcPlHYVtg1QZyBWNCv7eegfsPoe9KANuXnCyfb9WXUCNA BkV620wD3H92IDO7XjTTAPefanrTvRncf2rJ9lK2tjemM8D9hwGyfa61zZOA ziRRMHUseBceIOAaF3k9QatXSwAAAAAAAACZ/A+CBWtC "], {{0, 103}, {174, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], BaseStyle->"ImageGraphics", ImageSize->{177., Automatic}, ImageSizeRaw->{174, 103}, PlotRange->{{0, 174}, {0, 103}}]], "Text", CellChangeTimes->{3.6338290991860013`*^9}], Cell[CellGroupData[{ Cell[TextData[StyleBox["Et v\[ADoubleDot]list\[ODoubleDot]\[ODoubleDot]de v\ \[ADoubleDot]rvi ei osteta kunagi p\[ADoubleDot]evas \[UDoubleDot]le kahe \ tonni siset\[ODoubleDot]\[ODoubleDot]de v\[ADoubleDot]rvist rohkem, siis \ kehtib ka v\[OTilde]rratus", FontSize->28]], "Text", CellChangeTimes->{{3.6338284223944125`*^9, 3.6338284360756364`*^9}}], Cell[CellGroupData[{ Cell[TextData[StyleBox["y - x \[LessSlantEqual] 2.", FontSize->28]], "Text", CellChangeTimes->{{3.6338297756031895`*^9, 3.6338297996896315`*^9}, 3.6338301410806313`*^9}], Cell[CellGroupData[{ Cell[TextData[StyleBox["Toodang annab kasumit 2000 x + 4000 y $. Seega peame \ leidma lineaarv\[OTilde]rratuste s\[UDoubleDot]steemi", FontSize->28]], "Text", CellChangeTimes->{{3.633828457400874*^9, 3.633828468804494*^9}, 3.633829814166457*^9}], Cell[CellGroupData[{ Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztncGr48Ydx0WbQFvIH6Bj8fXd9h9we/BlewgJe+lBEEP7DjksbIuKDws5 9GYwLCwpPBA8thQWtoIHaWF5YBZCLwaRy1KMbyE8fMkhGB+WxyImGo3klW1Z mvlppBnb3w/ZsCH7vCP5q/n95jej3/e3w8ef/fkXjuP85VfJvz774m+/e/Lk i9HnHyX/8fvRX/80/GXym6+TX9PkF/89AwAAAAAACfEyuglfjT3XuQyX75N/ TA8IWM5qEY76ST7d94PwzWIdmx4PsJ74bjoaOM7AD+dr02MBR8JP0fih4zwc Rz+ZHgk4HlZT33UHwRxhCUjzfhleOu5ouoJqgDw/Tv0HziBYnIBq1otpuggU uN741U20PMrrSr+UGnpe+IOxAcbzYOC6/nRlbARaiNfz641girje89ny3vTw iqwW0+Bp8F1FaSO+C4dl17LNA3/6Y3ej3uF9NO45vXF01AWamvvcn0RW1BPu l1E49i74TFF1w98tgke1ojGcV3DZHHs+LKb0gR98E2UTy4cvSNzi/nhmtLBQ GE/fD6aLqsHw+b+X/qnSCBCvpqPkETEcILhsjEbJxqRTTVn1ICtGiUTA1Hyq IpiUeHE9HN0eTsnEM2I0QjEbZJMu5dK9DNKPJ0/f04eHZkteWxC6IX8+mTjJ 0AN/IC8Y8VOr6NvvKkKquCLjK9+jl806mkwO38PNkqRL2RQEkyznbiUFI/XJ VkQodgKyqWYdjfsdBqltwYTal/92RCimJJvknrwJQ7E/vpNLJP/rdRrBB6Pp neKtalU22Wxz8PFMvubkksIrv98rSZvj78PhheMOg3n9wx2nSYzblmBSRISy ocimOtus56F4mjLNx+v5C38ULtbvlrPnnnvhBW8V5+T2ZBMnASyZa9xhWCnl 1TwQy/f+ONoeu5CNU/dNxcvZRBSNBmkS09KXKh6BR8HiXTufrwIhSK1n476b PcLr2cR/MW90o9qTTXqf3S/Du7pyX5Y5l07+93fhl736XKIQnloSjz1TDaPl NnnCMHgWBpP6L6VuBO3IRkw1F8Pw+/rbnNY8D5Tr3y2CS+lcor3cRtQAramw UWST5fOqZbTsy1GCnMryKbHXryqAFPkh9HqlfxsvCj1UfcBbEE+6B2RLhGLU lVQ2q6v9YIey4SeIXO9aOnpmmfPu38Zzmz9SjyFtlgkaluHxIhjUplhdQpNN Jn4tBQTtQYpnI67aPlQedr1wufU5jwdNdyWUq8RlWBahGDFIraPnXv9B/RJD bgRaZXO/nH7V7381Vdv1zncPC5fDw9NA1x5oM/HYFqEYdSU1vP7/TESc5tei UTZpGiyzdCofQyFKJeHp0m+c7e8guQO+i3URihFkk6QNj3m4r1q0qo1Ak2zS Ize9Q6W5RFFX44NDzZP8bK8nCU/+pcwSjEL9eZttxExoQWW4iJpskhDwd0+E +zy9+fCA3r2+fkO4NC2yqdbManE78XpV2395up4M434dPfNkl2DtI+6z8b3L HWplIyqlPFtYL2fPh8PN8mQ7H1i/vR6/JNX9msvmPi1Q16zJarL3ZeilMfdq evO0aQFTJyJCmd+73KFWNtn9TNlKNQvVmydPCnJSHkEz2aQ5cP1Kvm6S31wm ITVSryxI5zZWRigmE6TElo3b919EO8uT9duAJ3gX3vh1g1p6M9kUVV0119RN 8uKrl9u1LP/ZNmRjZ4RKeP8f75OPP/H+e9RniTXAv3rC9v25Atlwkkg39pX3 7s8YyAaaIXDuslktwqcWLbePhfOTTby8HfVdfnZrtbgdDwfQDAV+ZuDYX69T Id+15Fx4k/9BMyTOTTb5SdHWDvyeB+cmG6AFyAYQgGwAAcgGEIBsAAHIBhCA bAAByAYQgGwAAcgGEIBsAAHIBhCAbAAByAYQgGwAAcgGEIBsgDr8LLHz8R/+ aU0LDHAMQDaAgKpsTsezyXJWi2mYtx7ld7rvX4XEZlwtoCCbI/JsshmJ/jbi 5friKfm8WbZKQ8I2kZbNkXg22YxcN62sh/a+Z41kd+5OkJWN/Z5NNiPfuy/T RnnLNXua+MnJxm7PJptRbfaYN5va6lm6QfRPtsD/i8vmo988+ndlamKhZ1Or Bh9aoPlJ5S+Nlva0yWYbC2Szevnpr2vfAbfQs8lm2TTxk9oYZZa1/c88yAit UHXDu1E17PHVsWeTwE7ZaGibn7WT5ey0aeKt3cvl1DWi/17DFKvas8luFyob /aSEPPLmBlnjHdEKj+C71AY6vOOzgFuWMG+1d9hZp2+3aizPACvQIJvdlnv7 6cSmMWD18DZ+UtqMOQoLjWSJOnp5ezV0XW8ys6Kwmq6PGnbylysmWG1eZqUN 2ZZyHCsW3QJRimxappO2+rLZvMxSG7LNWkPMOqQupjrJkwplS4u9z5G3+rLZ vMxCG7J0But5/7i9fVbY0DHVy/R+GX3Dr4vvQb5p+kSoWX1RzMsoFlQOYU1n mQ3ZdiAQXePMKUc8obqKRapWXxTzsq5kY5MNWemeVNY5PMVA3Sbfjm+a8xOs vmw2L7PHhiyfk/eT8IJyDFkwJA9C6CfzHjG3oVl92WxeZo8N2cFwycmXFSa3 /8QYlFdSVKsve83LNp9mgQ1ZVXLOPsjb6K5xWsdWqtuQrb6sNS8TWGNDtufS tUMmK8NOdkpVYrLVl7XmZYWPs8WGrCRcFhDyNu61Kr8npWj1dQTmZdvYY0OW JTBl1TBiXqGfNE7Vhgx1qy/bzcv2sMmGLC/UFI26srzIlmPb/HbVFVIoVl92 m5eVfJ5lNmTxMrr5V+HMrWUvifBLNh4rLQA2ZEqkT8rZnwKGpZQikA00Q+Dc ZQMbMhLnJxvYkGng7GQDGzIdnJ1sYEOmAzQqAQQgG0ABTdgAAcgGEIBsAAHI BhCAbAAByAYQgGwAAcgGEIBsAAHIBhCAbAAByAYQgGwAAcgGEIBsAAHIBhCA bAAByOYI2TaDM/CqLz8UWuu5ADpAwp6Mc9AMzunSDw6yMY+cPVlKjRmc05Uf HGRjEtWGkOVmcAb84CAbM6gKhnPQDI517gd3grKx0zNoA82ejNWYwbFu/eAg m+5oYk/G6szgWKd+cJBNF+jzYqiiQz84Y7JpyZ6MdeRQxmRNyvTZk9VS7Qen FTOyac+ejHXkUMYkTMq025NVU+UHpxuzQUq/PRnryKGMSZiUtWFPdpBuzeWN 5zaa7clYhw5lTMKkrA17slKk/eC0YFw2mu3JWIcOZUzapKzVlDhW9IPTgYRs KKZOCsk8xZ6sk4EJqixXFE3K2hHPeqboB6cDfutr2lm3/u2o25N1NDDOAYcy RjYpo9qTlcPN4JT94JojIZvW0WlPxrpxKGtsUkbZXNj/EGEGp+wH1xzzstFr T8a6cSjTZFLWRDwfzOCa+eSSMC4bzfZkrCOHMp0mZQoHJ3KoZnC6MCwb7fZk rBuHshZMyiSPabE6Yy9W6QenCZOyacOejHXjUGauNW2tZir84PTRsWxatydj p+xQJmcGt7e4WC3CUV/Pwi2nY9m0bk/GLHIo0+wzJWkG5+zG+i07ME07Vl0H qbbtyZhFDmV6ZSNpBufsbbxmB/+Se/4sSbz1nKowvpKyn9NxKOM1KH2yOSvP BSVOyWqKx7iBrmIyZHOQU7Ka4lnxQONbVOnKt4vzYMfAaVpNJYuN4fgVcf/i EEoO8qcNrKbkEQUTLVX9YwdWUwqkL23B0xmows9sEJ3TwTkjKkKuN5lhcgYq xMvo2u933ykFnACJeG7EK2+8OG/Ti40AAAAAAAAAAAAAAAAAZPkZuMYENw== "], {{0, 150}, {189, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], BaseStyle->"ImageGraphics", ImageSize->{180., Automatic}, ImageSizeRaw->{189, 150}, PlotRange->{{0, 189}, {0, 150}}]], "Text", CellChangeTimes->{3.6338291512120924`*^9}], Cell[CellGroupData[{ Cell[TextData[StyleBox["kus x\[GreaterSlantEqual]0 ja y\[GreaterSlantEqual]0, \ lahendite hulgast sellise arvupaari, mille korral avaldisel c = 2000 x + 4000 \ y on maksimaalne v\[ADoubleDot]\[ADoubleDot]rtus.", FontSize->28]], "Text", CellChangeTimes->{{3.633828525635394*^9, 3.6338285646978626`*^9}}], Cell[CellGroupData[{ Cell[TextData[StyleBox["Saab n\[ADoubleDot]idata, et kui lineaarplaneerimis\ \[UDoubleDot]lesande lahendihulk eksisteerib ja on otsitavas suunas \ t\[OTilde]kestatud (ei moodusta l\[OTilde]pmatusse ulatuvat piirkonda), siis \ on planeerimis\[UDoubleDot]lesanne lahenduv ja optimaalsete lahendite arvu \ kohta v\[OTilde]ib \[ODoubleDot]elda j\[ADoubleDot]rgmist : ", FontSize->28]], "Text", CellChangeTimes->{{3.633828627331972*^9, 3.6338286648500385`*^9}}], Cell[CellGroupData[{ Cell[TextData[StyleBox["a) kui sihifunktsiooniga \ m\[ADoubleDot]\[ADoubleDot]ratud sirged ei ole paralleelsed piirkonna \ \[UDoubleDot]hegi rajajoone l\[OTilde]iguga, siis on ainult \[UDoubleDot]ks \ optimaalne lahend;\n b) kui sihifunktsiooniga \ m\[ADoubleDot]\[ADoubleDot]ratud sirged on paralleelsed piirkonna optimaalset \ tippu l\[ADoubleDot]biva l\[OTilde]iguga, siis on lahendeid l\[OTilde]pmata \ palju ja lahenditeks sobivad k\[OTilde]ik selle rajajoone l\[OTilde]igu \ punktid.", FontSize->28]], "Text", CellChangeTimes->{{3.633828627331972*^9, 3.633828674834056*^9}, 3.6338302146815605`*^9}], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["Keemiatehase n\[ADoubleDot]ites on piirkonna \[UDoubleDot]heks \ rajasirgeks x + 2 y = 7. See sirge on paralleelne sirgega y = -", FontSize->28], Cell[BoxData[ FormBox[ FractionBox["1", "2"], TraditionalForm]], FormatType->"TraditionalForm", FontSize->28], StyleBox[" x ja \[UDoubleDot]htlasi k\[OTilde]igi sihifunktsioonidega mis on \ kujul c = 2000 x + 4000 y.", FontSize->28] }], "Text", CellChangeTimes->{{3.633828627331972*^9, 3.633828674834056*^9}, { 3.633828710979319*^9, 3.6338287109949193`*^9}, {3.6338287519605913`*^9, 3.633828798589073*^9}}], Cell[CellGroupData[{ Cell["\<\ Seega saab keemiatehas maksimaalse kasumi 14 000 $, kui toodetavad siset\ \[ODoubleDot]\[ODoubleDot]de ja \ v\[ADoubleDot]list\[ODoubleDot]\[ODoubleDot]de v\[ADoubleDot]rvi kogused x ja \ y on seotud v\[OTilde]rdusega x + 2 y = 7 ja v\[OTilde]rratusega 1\ \[LessSlantEqual] x \[LessSlantEqual] 3. (Need kaks tingimust koos annavad \ meile l\[OTilde]igu BC punktid.)\ \>", "Text", CellChangeTimes->{{3.6338288443595533`*^9, 3.6338289056364613`*^9}}], Cell[CellGroupData[{ Cell["\<\ Kuidas peaks toimima tehase direktor, kui tal on valida l\[OTilde]pmatu hulga \ optimaalsete variantide hulgast? Kas valima juhuslikult \[UDoubleDot]he \ punkti sellest l\[OTilde]igust? Ei, sugugi mitte. Kogenud tehasedirektor m\ \[OTilde]istab kohe, et see mudel, mille meie koostasime, ei ole k\ \[UDoubleDot]llalt p\[OTilde]hjalik, sest see mudel arvestab ainult v\ \[ADoubleDot]rvi m\[UDoubleDot]\[UDoubleDot]gist saadavat tulu.\ \>", "Text", CellChangeTimes->{{3.6338288443595533`*^9, 3.6338289359161143`*^9}}], Cell[CellGroupData[{ Cell["\<\ Tootmises on aga palju muid piiravaid tingimusi : erinev t\[ODoubleDot]\ \[ODoubleDot]viljakus erinevate toodete valmistamisel, kulutused t\ \[ODoubleDot]\[ODoubleDot]tasule, kuidas toota nii, et tooraine kulu oleks v\ \[ADoubleDot]him jne.\ \>", "Text", CellChangeTimes->{{3.6338288443595533`*^9, 3.6338289469141335`*^9}}], Cell[CellGroupData[{ Cell["\<\ Kui direktor seab eesm\[ADoubleDot]rgiks toota nii, et komponente A ja B j\ \[ADoubleDot]\[ADoubleDot]ks v\[OTilde]imalikult palju j\[ADoubleDot]rele, \ siis ta n\[ADoubleDot]eb, et kui toota 3 t siset\[ODoubleDot]\[ODoubleDot]de \ v\[ADoubleDot]rvi ja 2 t v\[ADoubleDot]list\[ODoubleDot]\[ODoubleDot]de v\ \[ADoubleDot]rvi, siis kulutame me \[ADoubleDot]ra kogu \ l\[ADoubleDot]htetooraine hulga :\ \>", "Text", CellChangeTimes->{{3.6338288443595533`*^9, 3.6338289469141335`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztnb+L3EYUx0V+QJr8ASrDttfdP6CkUHMpjINbgRcSFy4CTlDYwuBesBA4 CBwIDkIgYAYOHINZEAfBzYJI42JRE4w51Lgwi4pjMWIjaTR72r3Z1Wh+23kf OHPm7Ju3mq/mzbw3M++r8Y93f/jEcZyfvqj+uHv/l68fPbo/+e6z6i/fTH7+ fvxp9c2D6uvf6qv+fg0AAAAAAAAAAAAAAAAAEinz9AI9jQLXeYDy96atAYCK ZYYmnuM4Xhijy6woTdsDANVQeZVMfMfxQ7QoTNsCAIR3aXTiOCdR+s60JQDQ YZmEruvHC/DfgE28z9EDx50kSxAmYBVvk/DY8eOMUZhFljRLd4wbRE+TTMHU tCyySxSH3ihKzUYIbn/eizRX9xJrbq6HRhs9jAL0Rknj5SL2XTdMliz/Np9N PPe2ce4YXUl6enXUqtM1jklllsXiPKB83Eowp/N89YE3x2DQFRrT7NnmOEze Kmn+fRqN2Pq/mEfecRChtH1KyyypBjVsuutFcwkjZ/WajCcxQjfaNKfMnn7x pqnUwJrm5hi4zuJ7vbpUOA+slcmy/KnsHI/R651/dvM85VrYjORGlYkdmR/G z8ibuMpTFAVHmy6R8zKaaY6BugtGXhgnGdWdlstkUvUQo7floVYmw1RheRlN qU9m82bJzRm9QcHIoDKbN44WRmsDv5LHc83NMZmUnY8ns/1TXPwqKXPla2Zl rq+LgvpcmqW9/FFdXJnYML73pRoQHp/s8yN1kM2R+jJqbo7NpPTvfw7MH7BV SkM6rMrc+/8bAUgPh5pVZpFOp/uf+WbFKksqmpsTR70rX4srs35ubnC+kDw/ N6vMwxRp5Gl0r5qbY0G9K18LKrMJdPhPEvkxDZuV2Q5iakcMY80xgF05ewyc D35llkWGQu+Ommy7xcps4wa6thlobq4f7MrVp7N5lLnK0+edcPhRMH0pO09h rTLLalLoSU0uSGmuCUsPhPPZ4jH8Xpxdc34mRgYrk2hmG9k9Za0ym35xH6Ir PUkZ1ub0KVOPK19ze/OdYbMeOW/H4bcoXsV13NifJCwStlOZeATr+6Qbhn1k 4eZ0gMPXWnamCa6A6qkmkeeh96iT6mIS2wBl6hsu6vzsyDsUf+4y9CMLNqeF dtKr3pWvxaNG7USo8egH4q4fgTLr/dVD4mOCyhzanA7KLPZ7hiB5iCqzk+M+ 7Do/bG++ukIP3aHbKvi9OVdzytHoytcylLkZHGSGgq1S5ipPnnieirCttOZ0 OA6drnwtRZlt6lxqKNgeZTbTFX2Lcc7mNChTqytfSxwz5eaqLFFmk+QajeMF fSdYkZ5FMj+15uYGoaKXDyJpnvkxxjMP62SZzabBSOJmG83NDQS7cp3nxZiU STIRwXS2u48Uz9Wlz8GIMvkfhaAyV/n8lHr2oYu8CYzm5gaDXblWA5iU2d14 74fn8zbCVmSzaOyHSPaFHt0TMUdB/IprL7eIMps1SP9ETZZr09wcB9pded3m 799+7nwZPO/pvzJPz8Otp1dfMnOxZys+N2Qf8m0ClPP8Ki5l5ijo14m8fbOa m+NAvytfMysTADQDygTsBJQJ2AkoE7ATUCZgJ+x3dACATljv6AAAvdSb55Vd 5wUA3NRhXoPJBQCggk9o6tpxBwCsDLzWFQC00FxBBssfwDLwKRXrDpsA/2fK IntR3xqq72wLABxmlafP4tBv7qaHQmmAJeAtixC9BCxkmSWoHTORwXIeAECF 3PoC80zAQuprc1xYmwMW0hyIg3gmYCGQAwLsBPLmgKU0Dh32GgH2Ue+Cgwgn YB+wpx2wEzgHBNgJKBOwk/ZU718M9c2zpFPNot4SkmRK6hrfbujCjkSqJsPK IrtEceiZHC9IFpt8Vi88Q4q6ex9syizz2cSjXKIn+9rM7i1w2w0Fp3OTiVQd hpV5etGtZGNKmXjjbndnRdnUWncdrRUNWJRZ5zGPG0NxF1QvVEyKrcisCN/s sd9/GZq5RKoOw8pFPJ7ECN1o04gyy9dofEQrJqi5eByLMq+zeHy7WNJNZ0m7 vA6XjfPD+Bl5BVbNu3p041PkvQX2GrapFWJAmaSGDjUtqLmCQK8yl5fRlPrY N9e9yqls0kidVvezvEomZMJjYhjRbpj4TeDckD6l31aKDdMV/WYYM4uC+kNy C6ucMbNcJo9P9oVVca1D/rdA5P5hpYZRMahMUkud2qftmKlLmfwVBHB3y4rS V25kul/hbY1vE8pUahgVC8ZMarFL/BpqK0DDr8y6U3Qt1si7zNlZymqdixpG xaAySdGfmp3Sb3W1wf66txLhVGYTRfG1bYlvhybe2grqlCloGBWTyiQKxGzK NywXcbXe5a7mwAWPMvFhjTuURYEi2hkObRnChDJlihpGxawyt1d2jutN/pyd jV03mM71pjuGKXOnrPlRMH2p3lzxSJoiZSoK8Q1TppK6flvidPRFiroMUCZ5 YtuoD702HlNo4q1ImeKGUbFAmTWbxV3bzXuKuyljsDffGTad/lkxfzHlNRmX BCfeKpQ50LABD8G0N1/X6cj5NBgFv81mv3Z6mq8HeeFeAeFzwa3JB04SiRWg rxOjI28yY5wz6CimzGPYoIdgWpnbF15tb5nQKE7+qBHJZDmHg+0iyqzXiYMC U7qUOdSwD0eZ1Lx5O+DjvrY/ntnJ8B52lJzeHNdalbKLQ6435zLsw/Dm+MQi zQl2xKmpLqpQFWkyFMh/hk2RUGlXiEhUplzDqBhcAbVN03+Or87Q9soIKbNN nct+iZp5gkyvIUuZ0g2jYk6Z7e/apwd1A9E+YwTHTLmHgg8XoK+0cRYNbk6K MlUYRsWcNyfTsx7l6rk6Q3ieKTWeebj3l9lsGow4tjaJK1ORYVQs2NFB1x6e heo6adujTJLmCKaz3VLmeCEgcca1yuen1BMNXbhmDoLKVGcYFaJMIwXN28kk LU6754o2ElaSnVXvUWYn3OH44TlJnRbZLBr7IZJ3a3GzsuifIfHNHESUqdSw 23QPHOndQbGxYKO06AXp33YPP+3QE9mm68ge5Hu9eZmn5+FW13hhjC6S3SFU jPqqEAY4hxEBZao17LaRNOg7zFVSH5b7o3Oc5NBBUUNjJgAYAm5CAOwElAnY CY786Mk3AcAA4NphwE5wXAiuHQasA+qiArbSHJfTv50eAHrBJ5L0n48DgF5I rsei+yoBYEOdlsIX5am4NwAAAAAAAAAAAAAAAAAwyX+H9SK5 "], {{0, 103}, {222, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], BaseStyle->"ImageGraphics", ImageSizeRaw->{222, 103}, PlotRange->{{0, 222}, {0, 103}}]], "Text", CellChangeTimes->{3.633829214751004*^9}], Cell[CellGroupData[{ Cell["\<\ Kui aga toota 1 t siset\[ODoubleDot]\[ODoubleDot]de v\[ADoubleDot]rvi ja 3 t \ v\[ADoubleDot]list\[ODoubleDot]\[ODoubleDot]de v\[ADoubleDot]rvi, siis j\ \[ADoubleDot]\[ADoubleDot]b 3 t l\[ADoubleDot]hteainet B \[UDoubleDot]le :\ \>", "Text", CellChangeTimes->{{3.6338293287092047`*^9, 3.633829336368818*^9}}], Cell[CellGroupData[{ Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztnb+L5MgVx+Vf2In/AIWm08n2H5AdKBkHx5lLBdtgX7CB4WxkOljYXNBg WDAMCAYbg+EQDKwXjgYxYDZpEJdc0Cg7jkHJBUujYGgW0VZVSepqtX53lUoz /f3ALXvMjrpUXd96r957VfWb+Z8//9NPNU37y6/SPz5/+bfffvXVy8Uffp7+ z+8Wf/3j/GfpX16m//3yJ5pG/r4HAAAAAAAAAAAAAGBSJFFw533tWLr2pRd9 Ut0aANSyDb2FoWmaYbvefRgnqtsDgFKSB39happpe5tYdVsAmAAfA+da066d 4KPqlgAwDba+reumu4HDBADlU+R9qekLfwtNAMD40bdfaKYbtmgiicN7z7WN mRMIDkrJe3If4tCnQTeGbjlf+6Gs5dXpZ90FkbI5iQ6AFmaW94Oq9ikg2bim rtv+tu7nUXDHfYOauKEr78n9W7JaGPrpUNDn3oPgsZrEm1ur4qNSabxdRzux H9apQQ/evKo9x7yw/R/Hb5syPgXOrH48ppKZL1zPOwxeUUNX3pP7Eq8d44Xl eEE2Jrehn9ot1ijdcNYC7UXLCDSWwdiR8MfQ/aJVEhfnXRNRdFhlU4MiZejK e3In0lExn3vfl17/MHpFjgfmqJi2+y4X4C4KPMe6KgafWA22Qzp/ZtiuH1Z6 CsnWX6Td0OBIPE+IKLp4jD941kzO0JX35A5s751l5TgsplBhmX0qtKq4d5Yk UmAuk/B2vljVL2eYii/Md9o/G1HQGNqQAfwYx5W/wh4o0FKks+7r6zqLTKLi mlgNdmpS8L9vGxw21qpL8532EEXzAwWmb+JguawfXUUIaDolZ5fqO+0hijrI KNWt281IK984cAyV0YYKLtV32kMUldDAqfnGHy9GmlmKCU3LzHdqT2A9RyCK Mkkcerbx2aiVYFkIbjrlZ8x3utTiH4jiwC4K3nPpxCtr+WGURHOSrjeMDrlC mlPqycBeZZbrCzd8HPhOTxqIotSMYyQktU+hI1B/5T20eGvjieKSfae9NFHE 37kkJ2Uu/NYxNRFRMErGgtiL09TeET3etBJmJto+ZVRYjuZSfae9JFFwxQPt /76fKEaZLdmyIldG04TZ602rIEUmM6MpgzY62QLnUn2nPURRR+bnE5qyV2eK gmzvGjHw24kkdM2WqeC5A/epjqIoq/mxw92n3YP3SldQBNjMxftOeyy0G8it gJSE2i7y3xhGv1TIGFYSvtMeomh9poyEGvXNOoSbyg2SLwr4TgSIohZmKYTX OdB0+WzubqqrtePgxlFWWSHplZ8aEEUdbE+i4DxFsyK24WppzdRVpTLf6QLL Ykv0FYX4HhPy5GGiyFPJ1nJV3mXDVsFiy5920fpt5V5UHoXlT8x3mlD9lSo6 iYLfWXxlud+J2x0m6snDRMFvxjTt23WWLIjDlTM3bU/oMYl0Zd2+BlDousB3 ynn81+9/of3ael8zmPK9NqdYXnTWB4t98lD3KYmCW/torJJTQ+9qtmeeQeRZ 7YpQuqMHvlNBiygAuDwgCgBKQBQAlIAoACgBUQBQovmEQAAukI4nBAJwOZCN hxd2pjQAzZCkEpKYABSwk0wuu3gegCM63tgCwKVAz8HGKhuAHLa5eHJ7hAFQ QhKH35C7QgTvFwDgKbKLgneubdLbB++F7hcA4CnCNh0gKwEAzzb0vcxSeAqv qQVgauTHQmJNAQAPOcVUR/QJAB56egPyFADwIKMNQAnUPgFQhnpQqJIFgIOU jiNzAQAHdt4BUAJ7tAEokZ3m8V+IAoCMrqJI4vDec21DklGJQ5+7lJSUK96p rkI5bZIfijtZukByx3aF3L5Xdbitkmtb82KkvO8N+8aT0vk1tIkiiYI7/g5d 8d8df/D48WHD1tu1oiqUJFotjIo2CbyuQn7H9mkM2W42jQOf2TYfvjYv7SmP dNR4N2Y2iyLZuPOF63mHb0/0d1f7dTCUVKGQApgX9FthkkwnLje/QVg3nLWA KUt+x/ahzkyMHoFJvvfmV5p27QQfSz/IbhIRfIdODR3dp+KqUMHfHU2pa6bt vstH4I7OC1cH0ylkEPbgMXTnpz7DQbxiJ09ZHdunCeTVppCryq9priyxGPOG yq5rCinXe9Gv43RaID/wF7lLOfJo2d47y0oZFje8iL1ZT969aR2h7zWJUp+8 h6svKGEdNUpOTaUokq3/+rrOQJNT2rQzBuHgW/Ae47jyV/JbZgS72apFQfp5 HDNBvNDX7rcNV5IHjlHbw5mlGEUUKi+CTK3lsn6AMc9qfFE0P1C4m61WFIX5 oxEeT9IO5YNL3PiWRWOqQl5skux/z/IQ1N+OWkc+bwz8ROGiICKVEABRKoqD OT4srg37n4GwoB+3Quyw2TO7xZtgLnx+Sc1CAWPFh6crisxSDL2sU6woaNzY lLFRUaEo+HswS8qwlusz00T5iTHd5JDDx8GKi0G3G3euC76BtJHJiiLzIauW 4Z0QKAq2e/ezoS1pRvWaYs9SJnx0uHKu7vG4mISwzZ5yKH6bi7GkZmvxn9XN XBcg0j5MVBTnx6WFiCK1/u+5wXJlLT+I/m56dCytU+tJv++L3m5fSKO3A3+e HA6P4XWhjRSG5ZmoKKjvdNaq6nxR5K9c8iwE548mJQpCEn1Y5nmi7r5rEq1v s8IM7kby4RRhlqzT3c2IN95LEgVL1g80wcxMnLmqEuU+lYyF1mm51+P1J+A+ nXCocukQf86rMKgcXF9A/CoV2NKaWf9Yrf7O9ftgd64/UkTBreAGfNekymJm LFYdZ5tR5s/8UKDs+2lOdfV6/SmKIt+nnGI4Qf3qlo5ekXLYl484Pi5CG0sX kxMFiT/0inyO41QcihC01vnzGYiiiNY2i6Jw/kXZiKrap8zssp5/ynmKge7T 7sF7pYspAhSep+DqlFof+8TdJwprWKMoCNzi+tzVRG6eTg0xp4uhIfo+TGih vYv8N4awQwsliKIwASI7YXIL7aOGda1pERJ3yrqiusns7L5xZo+piII6JyKN owxRZOVPQierqYqCmsWeb3qeNLLXqxuNMmakhpYoFwXNF8/qwm6pXm6c3hVr 8iyF2PK5abpPbAE1LHPar7SD+8zMO63riUw0IxT0qhdFsyJoOmk2oDBV1ppC YZ5iNGjMZ3beThZOGgZdhbf/Sm4Lqoc9W3GMsu+prygEF07vovXbyr2oPIPc lWGiyDPp1nIVlj6TBQGElz9J6th2smhnaTLPsg5695B4Iz2lkS0cqjJBVeeB 5wFb0WVRnUTBb6MW2AC6sm53i4e5K8NEwdfIcbGUOFw5c9P2RFdWS+rYbp99 KEktzUGWsxJ7SkDH0nHaqmKcO9/kvZ39+sme/XyHi3A72yIK7nNLVG+P6gM5 nLADA6fQoe5TOlXe2kdSTac4784vG44zkdmxXTnZ+WvfeBIPUWndZJRDChT/ zTWs9nQXmZZiUv4sAKqBKAAoMSQcDcDzBve2AFCCxVtwbwsAB+jhSziNHwAe ult85M1NAEwcVhg/8vZwACZOnrSaxDH4AEwHetoJ3ZIstr4UAAAAAOAJ8H+P jCZm "], {{0, 97}, {263, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], BaseStyle->"ImageGraphics", ImageSizeRaw->{263, 97}, PlotRange->{{0, 263}, {0, 97}}]], "Text", CellChangeTimes->{3.633829382700899*^9}], Cell["\<\ Saab n\[ADoubleDot]idata, et sellise lahenduse korral (1 t siset\[ODoubleDot]\ \[ODoubleDot]deks ja 3 t v\[ADoubleDot]list\[ODoubleDot]\[ODoubleDot]deks) on \ l\[ADoubleDot]hteainete \[UDoubleDot]lej\[ADoubleDot]\[ADoubleDot]k suurim. \ Seega \[LongDash] seni kuni turg ei ole \:201e\[UDoubleDot]le \ k\[UDoubleDot]llastatud\[CloseCurlyDoubleQuote] v\[ADoubleDot]list\ \[ODoubleDot]\[ODoubleDot]de v\[ADoubleDot]rvist ja n\[OTilde]udlus p\ \[UDoubleDot]sib, on kasulik toota 1 t siset\[ODoubleDot]\[ODoubleDot]de v\ \[ADoubleDot]rvi ja 3 t v\[ADoubleDot]list\[ODoubleDot]\[ODoubleDot]de v\ \[ADoubleDot]rvi p\[ADoubleDot]evas. \ \>", "Text", CellChangeTimes->{{3.6338294571130295`*^9, 3.6338294571130295`*^9}, 3.6338296742654114`*^9, {3.633829710317075*^9, 3.633829723670698*^9}}] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["N\[ADoubleDot]ide 3.", FontWeight->"Bold"], " Broileritibu vajab iga p\[ADoubleDot]ev v\[ADoubleDot]hemalt 15 \ \[UDoubleDot]hikut vitamiini B1 ja v\[ADoubleDot]hemalt 15 \[UDoubleDot]hikut \ vitamiini B2. Ta saab neid segudest H ja K. Segu H 1 g sisaldab 1 \ \[UDoubleDot]hiku B1, 5 \[UDoubleDot]hikut B2 ja maksab 1 sent. Segu K 1 g \ sisaldab 5 \[UDoubleDot]hikut B1, 1 \[UDoubleDot]hiku B2 ja maksab 3 senti. \ Koostame p\[ADoubleDot]evase toiduratsiooni segudest H ja K nii, et broileri \ vitamiinivajadus oleks rahuldatud ja kulutused oleksid minimaalsed. " }], "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633669252124558*^9, 3.6336692604861727`*^9}, { 3.633669374799574*^9, 3.6336694140180426`*^9}}], Cell[CellGroupData[{ Cell["\<\ T\[ADoubleDot]histame otsitavad ainehulgad x ja y-ga (loomulik on, et x \ \[GreaterSlantEqual] 0 ja y \[GreaterSlantEqual] 0). \ \[CapitalUDoubleDot]lesande tingimused m\[ADoubleDot]rgime tabelisse: \ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633669252124558*^9, 3.6336692604861727`*^9}, { 3.633669374799574*^9, 3.6336694664185348`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztnc+L20ibx83uHvZf0HHJtW+57Um7B1/6Et4llxwMr2G3D30YyL5o8aEh h4E5CAxZAi80CEwgEGgEhhAIBtHwEnYwmGEgDEawvDTBGJbw0hgdghlEr1RV kktSqaS2flh2fT8ww0xblvVITz31VdVTT/3T8Ic//Mff9Xq9//zH4F9/+ON/ /cvLl38c/ds/BP/zr6M//fvw74P/+O/gn/8Jjgn/+wEAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAgOOnRzj0VbQBLAVAAtwGAFARdcIILAVAAtwGAFARdcII LAVAAtwGAFARdcIILAVAAtwGAFARdcIILAVAAtwGAFARdcIILG0Qb27qWk8f Lzy/4pn89WJqvzMHZ72+5ZY9me+5n8zRu9LHN4TvLcZ6T9PNuSc5aB8DJadb TkavZ+6m8okUaiDq8agG8t2d/GjOXIkPA5CHOmEElsrxXavfS6MZDuurNo6h ZT6O+8S6FAX/K2U73I1rj/qDN/P1ttJP10AJRbGPgUW/up6N9HPDXlbsArrT QKSu+N21nqc+6VvLA2vJTvP4BuKvnNG5bthu5RcEoBrdCSNNA0vL4K/sYdjl nQ2sL9keinRewceaPpqtmwo2/sYZaWU73M3Suug3eDES/M3th9vNHj/8KAPL ESq6p8JHVp6ONRDfW04G1BXHn1PPd+elpr04jJLc++m3zN4N5H5hnmuDyRKi AjyGjoWRBoGlpfCXVj8I1k8N55vo42+O8bTht8LyHS4ZE6hjqmUfght1fuV0 RFGwTrY/clZ7n7JzDSTXFclz1wbj+SGEJLuEvZ9+m1RrIP6dPXza5LsDOEE6 F0YaA5aW4ogUBXkxH9p3hwh425V9qWmj7igKNh1QQV91roHkuGI4UNa/sJY1 pI7sS5Wn3yKVGwiZfjo3F/d1XhU4aToXRhoDlpbiaBTFAaP6du280sMJ/E4p Chr/9380nWsgIlfsgpyo9vRbo44GQh9B3Y4KTpjOhZHGgKWl2ENRkNULN+aA C1++596SP5HzeK5jGWEQFs2J0xPYJpkzDw/4y3JWosMl17lLHE2cbT4xSGaf NjBn7sZ9P06/5C6m7Hp6Pd2wnDitvcxlb5bWMJWjSi8jXsSRvapSBobfvzZ0 eu4+uSw/8ekkuhjzk7v5bTK+TdtOn92+nUjnGkjaFYOnYxuFciJ4ajfsXocJ P+F9TB4vvpN8wmf0i+wC6JnoXc19+tR5dr+cfoLEtezg+T4J2w7nENpgTJfq JJ0k00zk7pFz94QNhN2luAmQZpKTgUNvS140ACBN58JIY8DSUjxaUdC/8FE3 egcnwfml9X5izUj0C3O9suMbJAEgCqGBGhhfDgbPChVF7vt4ONIbL3wIs9z1 hC0k3+8Jm4L315/Hg7MoDfUxl02XbPB9N7eIIxXGSxnofbEGOndM2LNweXHB NTyLcu9Jx6oLOwv6LPaM/51rIAlXpA9uWCAnwqn/s57+ygnTNaPczoQjye5k lPDJ30Dypt8TPeukciPfjTOWqfDY+Qy3ekXrm+9urBuSUBrpk/4b5+f31lvq lCtn1E/7W4F7iO5E/oAVza+Ovk7bSEzKeVijyFUmACTpXBhpDFhair1mPVjA TMRYemRizQg7LNGThstOtaHNJRRGEkWmKPJenUgATFzGdu2Mzfiw7MwyUwLP Lff7Iy5b1KfECxsT4beUgSSvXnBMdJ/Dn0sP/l+ZmTEKdgF7Tnx0roHsXHEV TjRoRXJC0P3R2xg/3KI7KZxnyfq24OlntBw9JuHD7JkmFhcz90uk1Gb8rcg9 BEjGFjL3RCpEBc4PQD6dCyONAUtLwY/05lJeUSTDVDoU0xdAPrg97AoOyIJY Xgyk381b8pDVG7G9sUVlLru8oihnYKabSx1D3zdLZN2XuXW5dK6BsEdzNjAu w5foYkXBhoM4xZjueQvu5P6KgiYtXNqrbeIYQcedmjEs8YtF7iEiXyQILkw2 EBGNrqR8GAAxnQsjjQFLS1HzGIW0axbP+5dIXGQXKYhyUQAUVirgJmiyIomF 01oVRSkD+dmW7GWR70YyTyNWSeaCquR8dq6BxIrCfB3nD5ReHkvyFliqAOeu 8ju5v6Lg2bhO8Mt0lqO6oijhHrm3TiQDBB9JpzYECuTE4RJaeiRl5UMYSTa3 4wkKqRVTZxgpeL0NHs3NND8eksS2VIJfnXTF0lROlLSH2I9KlrapKMSRuZKi SObOJXVFqcTFWhVFKQPLJL/F5Z7kXhOdea8W1FVFQbNkv1hhxksvr/Ya/zXS wvok5/YvdtpdpXeyqqLYkLb9JPzl+U1NYxR75UbKGgjNC+JPKJ0sY4pCkeRM 6h7arl7oTl6gNGsp6g8jNDkqPZscJ2ALhxyDSPjj0HzLhH33FQVlD0tpteok tRemOxZFIfrWQ2VF8bDrU9j9jUbLC75V9rLFfwlJK4pyBpZOfuC1qLhjPckx injlBU1ZJC0rt0A01ZP9KDU3J98g705WURRU8+gjmy4tqW3WY6/cGLmrJy41 Sk/Ni0JKjVHQ+JxuPkxmQFGUoYEwIspPI0Sp1PmPpmA4sRIdsJTmmb9lb827 VWwFe0s9lmNRFDnBqky3WGZRA9kdib7YslOxrEtpzZ8GxigKDIzGnBOpd/l4 7owNyWaD/EnmUfDPYjcApQk2qqB3km9N0gzG7J2smpnJFYOqTVE80j0Sv5XX QIIu8q1hvIzGamRrUVXKo5DM/gQt6wUURRna7Gd3ES9PM5yKohBbGvjrRSos 0BHImk0+GkUh/q0yiiJ/rUdqtwU2KETjYXRmtrqQ/97ddPK5qTyKQgNFCf+E 7Wr6PjRn87N9y59BvA5X6pDFHIOieNgVmBI8x+yzy7ir/E7urShyVxPXlZkp dQ8BsrmS8H3nvKzmzBlnO0mioC0sPIs8inK028/GWUY5ivd0FEXW0uAv15Os 1Q0MKh6Noth18XwTjioA7FOPIjjhVT8x4EMuI/7FeNYpUdhq49o/RStM613r UdLASFgm3hbD4egRXdgY/FyfPwM9bfYZnXA9isQHu1yIhKgooyjkdzJ7BlGF zJYVRaF7CG9ebj2K8DJKj3ioVY8iLhtSbiZ6u158iGZXRbXUktOvcSmz1G9x EUNUZu3YOPybO8/pKIoiS2MaMLmKpXvtPRp1kfyoL+u7+SFoutl38rBocjwa xN6u5++vRy+0wmYlrg9MAyCphbgrYcQXoEgk5sUNemdOycvmR7m932z71/Dg KK8moR9KGrjLPOSIu0viJLuI5C1toy/oFE6rZubOFbMFJPl8pF16JfND1h14 7mz8avjijHbiv68/Txd/K7qTUQcaV3+aTqzrOOMitcSYe/rs0bNSaZ77afzT 5QumKDbr20+L4IlE18w/uNhGzkXjQRi+NUndQ3z7cgpo52eVp7o8gmI1M+Mm TP0qt5ToA52Ae7Jr1G9I0TF+gTN9jlEgJZ7G3Wu6hkuQiScqs3ZMNBBG8vvZ uE3lKd6TURSFlsbQEFfrK8B+lvKaeef46ZSAJEG8+j0doDRj9jW93u25tfwl c1g8NcAt1gpb8XIVVo0YmDe2ZGVQzrYFZNbjfrWrV5wYi4gO4leHBQewn8ku 05NcNstn60XqJXP3uIBQ0sDEZUVr1tjN/9m+XXEvROKJ75PZ10PuisJP2WhA VE8yei6/MzWoGxN6q4vvZFxDUqMpT+TnwtVbdqJae+Lph39i9VfjnojNp5CT fBe4lvs1vZY5cOavs1QrEzeTlHuIydvXI754EakBfwX39Uh1/bHnJKC733Ll R/KmMgvK4ol6kIJR4q7TQBgR9rNb0h7oG1y+tD4FRVHOUgb1w5qznhqwtJMc cu/RDkK8sULbUcVt1EHcQHxv+d6cCBYKkUzmIR+LiJo61q6tAht3NuZGMrOj ZGTmKFVsP5HCKkwGy86pQVGUgZ8MyiCPeMepKPaxlBH42D/Xu9DjQaGuIfum oC5ksLR8ASgByriNOggaiDQt87s7ud5FrXBM/mmJSq0nSmKJsbB2uhCmBETV y6Eo9kMyF0BnA+PV4hmOU1HsY2kIae/CvOJqqNQ1hEO7T+ou6HF80J2kCko/ FaCS26hDqoGQTi1vFsObj3epnjRPQPGWxc8Q7XJdqFoomKqmE998XyYoEgJF UQbZEra4SLJ4sPpkFEWhpQ/E5fo/NPF+rVjXQCa+48pC6kFm8KvKiQfl3EYd +AZCk1c13bi2E/lFtNrnM5YLStJR1JMTwuV4cWJ2LxYD5XZPS5XfpPk5qYx3 KIoySBfFx5nGwsdxQoqiwFL/zr74oXDno/1Qr2sgU8Cjdwrlj8X4y8loXEsp d/XcRh34BsLveBJP0YZ5wpHG+O5Ofmxid4DOEyiKn0bCfpwtyuD3Ag7+r3C+ dbO0rgwjWtglyBKHoihDuX5WKBtOUlFkzQlXFF5UmfKWg64B7AHcBqhNmE75 RDyXkUqBiDamzySZ+KtPE1ZCbbuyfzgvWHgFRVEGjFEQci0NhetVWk4ELw6/ 5hXCfSzoGsAewG2A2tAFGqL0ZpoUsct5i6dCkoWtvKU9es1VOpUX/I9/MVmP gtX8gaKIkfSzcSmkk8+jyLM0T07YxnBS16A9ugawB3AboDZxRZqzgfk+0glR 3ctE9aqH5B7HMTs1klM1pcfXMCGnoV0ePXnwWx8t682uWsgRVgKpP4zEdcAS Nf3CyTu2J6d4+9GHnOKEtXF4S3fldwRuVmNdBXQNYA/gNkBtoszMQEPY78xd kdK8ndS40kMk2TVZkS8ulZYlWZI3Xk5Cq2mFg9tPwtRZ+7auUes2qTOM5Nd3 5R7NjbAQokjRdbju0z6WxsX5hS7WlSrcQFngNgDUx2Y5eT0R5N6T8lmld2o7 OtQJI7AUAAlwGwBqQpqW6S8n49wt3o4ddcIILAVAAtwGgHoIsyPydtjxvcW1 eZxZl2VQJ4zAUgAkwG0AqAeWYtc3LDuxxTmt7N1AneTuoE4YgaUASIDbAFAf G9exLSORHkg3HHZOurqvOmEElgIgAW4DVCA3PR4AAAAAigFFAQAAAIDq1DVe AWpHnQcESwGQALcBAFREnTACSwGQALcBAFREnTACSwGQALcBAFREnTACSwGQ ALcBAFREnTACSwGQALcBAFREnTACSwGQALcBoAN8d63n6cUtu60kvznG0/Sn Xdr0vO0w4q8XU9sOd/t+arRb27z1gOlvnFFyg9K8Su81g65BxHa9+GiTTYo1 wznlonX7ArcBoCvE21vrIztTY9Nf2UPyoTZ4M19vD3KBebQaRoIudmjeWIYe /uapK4rsjue1blkuAV1Dhm/O6Afz5trQwycCRSEEbgNAV2Ddx9nQvhP0GeFO ZEFjPTcX9+1fmpxDhBE6bnPaisLfOFe5u9k2DLqGHNioERSFELgNAF2Baoac l1Dftfodm+yIgaJoBG9u9q/aGZHIgq4hBygKGXAbADqCVDPQONbSHPpjgaJo gO3KviQTHpndbFsBXUMOUBQy4DYAdAOanJmnGQ7TgZYEiqJ+vLmp8xkUmm7Y rteenETXkAMUhQy4DQCdgCVRPLfc74JPpRMiBweKoinCVS03ltFnskIfL9oS FegacoCikAG3qQnfc2/JcjYucc5b2mEoyEm0A4CjxJRHd4MYFEXDbNfzNwO6 0qctH0DXkEPXG+NhgdvUQXLNOO0UdoOWUBSgkGzZgSwdnfJ4gKJoA99bToio yBnFqht0DTlAUciA29QH1+SXS/vicjxfQ0iAckj7R/mESAeAomgFeaZNzaBr yAGKQgbcplZokz97MXg57l7RANBdjnbdKAWKoh2IJ0BRHBYoChlwm3rpfvAH 3UMeo1p9M90PKIqWCJUnFMVhgaKQAbepGTpA3dWcfNBJjnvK4wGKojVCRYE8 isMCRSEDblMvvmuPBnrH4z/oFlLNcBSjXlAU7RA4w/nQXrXiCegacoCikAG3 qRP/bvr649dle3Od4PjxvcVYz9UMRzDl8QBF0Q7+nX1h2KuWNolD15ADFIUM uE19bFdTaxq0d5Jlx/zN+23q/LXLfQE4LP7683hwFrRBTfDuGa8e0nRz7h3k +spxgDDCVme3fWfaspTqpbOBaS/IPrP+ej4xX2d3pG0OdA053C/M8/DWtFht 7IiA21QlHLJ+OrT/ull+tH+h6ztINNAG5s3NxPqwhNcBIdmNqvmxCLbTKA/q URDk961h2rLU99xPJpGapPMyrOmi5bXo6Boy0AHDJN2ejmwfuE1V/Dt7eBbo B676BB3HbrsOPwCHQp0wAksBkAC3AQBURJ0wAksBkAC3AQBURJ0wAksBkAC3 AQBURJ0wAksBkAC3AQBURJ0wAksBkAC3AQBURJ0wAksBkAC3AQBURJ0wAksB kAC3AQBURJ0wAksBkAC3AQBURJ0wAksBkAC3AQBURJ0wAksBkAC3AQBURJ0w AksBkAC3AQBURJ0wAksBkAC3AaATCDbAirYGS3/UuS3DWg8jbEdpjpY2C2vb Un+9mNr2jTnQVNq3vaP4nutYRp85HNkXFvs2pYDbANAZ6B5zYbjSR7NEtKJb keqGZd92cPu51vvZjPrSRs6mjdvSqqWBbBqaN5ahH0JGomtIsl07r/ReinNz cX/oC+sWcBsAuoPvWv1s/+iv5+PLofmpg1qC0m4Y8TfO1Xlb25enOETA/OYY T6EoDou/mo5G1/GW8v7685juNY/dzJPAbQDoDGwwXzOcTfyn9Ww0uLLdjex7 h6bVMOLNzf5VOyMSWaAoAIMOG7Y1OHYswG0A6AypvmO7nv/ZGNmdHZqIaTGM bFf2JZnw6BuW7bQutKAoAINMvfHiHzzAbQDoDiw94LnlfmczHePPR5H71V4Y 8eamzmdQaLrRquKCogCMjWM8ubRX20NfR7eA2wDQEVgSRd9yN1+s4eV4fhRq IqT1zMz1YnoTZ9339PGiLVEBRQEIm6X9dtrtuciDALepB7rIyzL0RHAjI7Qa dCwow3fXeh6+dQ9evuz/cFw+c6Awsl3P3wzIiEVrg89QFMqzXS8+EDXbNybH I/rbAm5TA4m1bHzDp31ESyvlwXGT8KKzgfXFO/QVledwYcT3lhMiKshUUfNA UShNetlyZpW38sBtasO/s4dnGf2wWVovRx2rRwS6SJQ6PvvtZhgGrWNa6n7Q MNKqboeiAGRE+tpg+TzH1E5bAG5TH3TpXyqy3S/Gb7C8CBTBrxuNljO0mB5Q kcOGEZJ/AkVRM+gaCoiShLHcgwduUx+iYgKr6dUEUx6gkFSvcb8wz8NgNbRX x+A9Bw4j4fAOFEXNoGsoQhDwAdymRna5+qyw2p09+vOxvGaCQ5KtlsPegM6G 9l33HagDigJ5FDWDrqGQNgfHjgW4TZ3QfoEpiu3K/mmMKTZQgrQWJX+Lcg6P YKL24LMe520N5kBRgBjSbFuSsscC3KZOuDdNf/Xx9fQI3i5BB6BdRnY4gq0n 7emvnHWnF5MeMoz4d/aF0dpiWygKEHG/MJ/p5vyI1mS1ANymTujaokBRrH6d jD8exQw4ODRxUYWsomDZFERUGJMOb53cVhhh0ovsIx1KCH89n5iv29z05AAB k81/aS13XugaOGiydOB471nh97Ck7bCPpaMZ4DZ1wlYr64Mg/CN9AhTBJjsS RIOodLwr79OO0VYY8T33k0n3fCQqy5q2LbNaDZjZTdtbnLVH18AROJ5t6Fy5 GPNd6653HMBtaoW8Q6FIJlAMdcIILAVAAtymVr45o5fWEmuJgFqoE0ZgKQAS 4Db14XvLj/YvXU/LB6B21AkjsBQACXCbmgjkxIfJLZIxgYqoE0ZgKQAS4DaV CNOwn/StX1fz95ATQFnUCSOwFAAJcJsq+Ct7qPW0wXjW4vo1ALqGOmEElgIg AW4DVKAHAAAAAECAogAAAABAdeoarwC1o84DgqUASIDbAAAqok4YgaUASIDb AAAqok4YgaUASIDbAAAqok4YgaUASIDbAAAqok4YgaUASIDbAAAqok4YgaUA SIDbAAAqok4YgaUASIDbANAQrKTq0K5Wn327Xny0b8yBpvWtZTcrvasTRmAp 4LhfmOe93rm5wAaRDLgNUBd/afW1Xgpt5Gz4ftvfOCP+IM1wSpZcr0NR8L+u qqLw14upTTTVU8P5ln/cN8d4mnyWzy33e73XAksBBxRFGrgNUJvtev5mwPrs vmEvPdFB/vrzeHAmOaBhaA+ipKIIFNXQvLEMPfwFWT/ru1Y/pQ1La7/ywFIA JMBtgPLE4wCSF73vrjUc2ncH6tAVVhQMegck/WxwwEXt7+lZYCkAEuA2AJBd 6TVZl+0vrfOr5GxIm0BRyPtZ31uM+w28p2eBpQBIgNsAQIYgnpN5D8sV9dm+ a523EsZzgKKQ9rP+nT08C69ANyz71vUavEmwFAAJcBsAQjaOoeXNX98vTCMz zux77m2YQ9eLcjAsJxnhN64zJUs0kqmenuvsvqbp4deyUmW7XtjmgPQd2mA8 /3UWKwo+mzQ6Mz+xnphS99eLCZ2XPxuYn9zNb5PxbRO66KD9bPjarifSChpM d4Glp0XYSO0wdyWc8fRJq9Pi9hI251RLXHMtOV6ExT2soHXb74LjSTMMTh6c WiNffTNfbw9iYcuo4TYAFELTtkVJboHYOE+PXZB1HJo+mpEQs1la4aoObgwh GvToJReP0HdM/ZUThhffW07C+JUeGNmu7EstCl9hUuhwMHhxxo1RkAOEZ05c f2DRM92wSWAM9I8dBLcmUvgeDv7mTiDrJK5pAA+lmjlvoquFpScE10h7z8yb 99Zb0uS8L9aANLfr2c8T6+2CNsPZKLzhcaoVvwgreljsrYQ8lZfX9uTtLHxZ iHRgzvjniaGA2wBQiuhNP5WfGYSOq/P0dEMm7NNgkgoa9I+7fp9FIa5bp+fh f5HGn7NEFiiLVDvFwi41MfrBwuPu5OG3Eh1TEBWvzNMbo0jir+dj+ppZ4uDH A0tPDda4+BWgkVpgyp9C21dy5pENGPL3P2rjg8kyHrFkh9W/wreDqOI2ABTC XvOTL33BHy9+zORk0mGES3sVBRwWl5JBI60o6MgGrxYyCRL0GlLKhEWkxykK ckw8itIsHepnQ+iQUSNvhbD01BC13FKK/UGqKBKDgY96pseNKm4DQDHRuwmv AYpzMjeuY1sGTWQoUBT8b3nurc2KD6SlQmZuIi08SkW8KONCG5j2ollZ0bF+ tsG3Qlh6akBR1IoqbgNAGdKjAUEYuciPAzTz6kmYXTm/KTNGQX/DC7/WD9P1 nb/YCakgDEcPeyqKOE+DTuw2qSs618+yu3GM/aw6lnYDKIpaUcVtAChFlKyl jxeeH9apGLxeCNfo0fQtfWTTlRrlZj2iYeo4RT8lFURRS3BY6Yj3QJLP2UhI L8xgt74cZxbfY2MyDezH2M+qY2k3gKKoFVXcBoCS7JaR/p8oJ5NCQwSXzVVK UdBow+dppKRCNO2SnhavoCgonjtjy+IaSQ/raD97lNkF6ljaDaAoakUVtwGg LGwZaa9/Zb7MKXecHXwopSiygaWMVCh5WHatx8/2LR/BqF2NlMnqXj/bVNV0 WHpqQFHUiipuA0BpdgWj8l79GlMU8V/S602GZ4nDshfgr5xRP6koHKM/5qZs aKw70pWGj4vJ/sq+uKi4ibwYWHpqQFHUiipuA8AjKIoArIunaQm+534a/3T5 gsWlzfr204IGonS/zypTsbXqnjsbvxpGpat+X3+eLv72sKulczYYf6a1deaT NyNatW8X5egVRnkR3nJqWddGXDiThEfy69pgPKOZHt7SNvrVtlbPpfEwEm28 IqjmxG5ynHi6XS/emea0oQrVsPS0iMuQ8mu64wpy3PLwSLGzDCv2N5us3eUf VjTCyR0me6YnhxpuA8CjIC8a4lWf0RFsf3MS4WeuF80p6MbbxTpZpCIxkhBX JaJlfn9nAU03JtxCDK4aMJUE/xvoh+B3buyPu5MThUBHUozJfO2Td6hwu4cp K+sdznqs1osPVnxYuk54bTQYRviq45GoSk7cbAJlxlU1v542uVQWlp4QVJZz 9C33flf3kt1oY/Z1Vx6TErxrfOXqbdLjRs7XWfK7weP7ZZk97GAbDraBAm4D wIGQ1aM4KdQJI7AUAAlwGwCags47HHLT0pZQJ4zAUgAkwG0AaIpQUZw1kYff NdQJI7AUAAlwGwDqg+Z07XIk+s1kQnYNdcIILAVAAtwGgPrgC1/ThMlDX1Er qBNGYCkAEuA2AICKqBNGYCkAEuA2AICKqBNGYCkAEuA2AICKqBNGYCkAEuA2 AICKqBNGYCkAEuA2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAgK7x/2d3uiY= "], {{0, 146}, {710, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], BaseStyle->"ImageGraphics", ImageSizeRaw->{710, 146}, PlotRange->{{0, 710}, {0, 146}}]], "Text", CellChangeTimes->{3.6336697701978683`*^9}], Cell[CellGroupData[{ Cell["\<\ Vitamiinivajaduse rahuldamiseks peab kehtima \ v\[OTilde]rratuses\[UDoubleDot]steem\ \>", "Text", CellChangeTimes->{{3.63366990737891*^9, 3.6336699177529283`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztXT1o41YcN70O3TtpLFm9ZbtJ7aAOXsqVW24QPUPr4YaAW1Q0BLp1UDGE BgoHAlMIBMIDQzC0AZHlFoM5Do4iBB1CEV4yBOMhhEO470P2WbY+nj6erRf/ f5DgxLL01/vp//ne+/uL9tGzHz5pNBo/foZ/PXv585fd7kvz20/xH1+ZP33f foJffI1/fsc/5PUcAAAAAJUjmIwHF7ahNTTbC3YtDIALwcxDhnqgGq8H4wmQ JgsCH7UVzXR8oEwq3Hv2C9UazXYtByAfAtfWXtje/a7lWMWtYxw2Ini+Uwkf JuMhQmeW3lQMZ5p4WDB1TCUitqLZriA7Fni2ppjOtEZmkogUpS11uETj1jGP rIvXhqpkSEJUYI03gQNbP+KwunVqZgHmS21KJg4fcNwSpl8x16sXccFs3NOE 6BdVHFQ4aM4ibjaytONtDqNw4qaOoXB7qOAGtZvEyKiGja69WaVS4UQVWfqB bl0UOHM6cQ8+ekWtpIbldrxt2PU6EUfUTY04Cc1AbsXhLqkzYIfVMuzL8eSB /2NpxGF1U1e9m6IaqOKnblOgDOKmnjO4sHRF7Y1DSVi2rjSUV8jnuPFcGscu gIcWhcEAGYTYVIUehGxD/SjYPHzyuQTD93Vu6apunfMpSKaPWyk9MUQEqx6p xK2G5SyyXVEKYcQtJJuMejol79BwbqNvrcZvq+/inPR5niD8gVrPQ46SEQdx y3OOTpncQoNhDlM5de02EQQPx3+o0z4d5bAwJYiLXjqmfBo6xDWa8Ee65hrR GcA2xMGaougpwQs/cfSEbp9yJzD95PJx7AlXvtG7f+RW/1LELZUr9gxsMNeI uxv3TvO5bEwbcQaN6oib59f93OALTrjF2ExCY5EjHGKXTiEuMpiBPzju844V cUrYS5JYws7ydHmJY2WEnRMXVjOKGO2SGheOWPwZwhrL0pBi42ny2ARsG6+p kjWrDE7WQG5858Tde+gXHYd5BabqKiEu6brk5EvicEj5a298l3o2HI1c0sBP qzIdiEXZG88SiIO4wB+eDFw30WSloqz82FS22+gmXj5GHJWfCplwGAELIJvE k1WfgMd9wLNbbSRuqiybuOBmcDL0AyY5i71x1HTl/MvHRTniAh91Osm3H0ZN puO/6/eGqaMkuOS1fvgN6hhc6VJRJBFH/48ztVsXXb5lzyd9vMkDi/600T+8 BQ1+4kL1WcZ2WEfOLGuQph1hLKTqRl9otkuCVauVkFazbLdJ5SZM4QS0b50g wYWvROLItDgexdWsjQmfswyVQ+Om3lWYctOqEc86CjpoXKWAzTm+uGg3RqFY WBtFxOfiUOcvYoTDgolhb2X9x4e/v/v8ydPf/A/CryQE2AB2bXd3k3W7g8zE YVc7RG/Tw8hHC2mJw6xd9q/3d4GTZMSRCZQDzX7nj873mbV57WbAM7AImXpX W5msrDPkIg6wBCEO1pzLh9RKIKC+IMuYxVWwAYJAfP0B3woEQG0QTN70dDWx 8A6oIdhkvWb0YVOVRBA8MwsQiIXG2Y4Hu6ukA/Nxuv0euJMOtIK0261ngGKA PE5SQOVEVkCRWVIAcZICiJMU2TPgbNVc4hqnfUAduy5kEbe5OG1jt9ojR027 LmQQh9WttW/6FYvadV1IJe5ubOmPRb/2qOsCW5nDFhUjgVXNbeWS+9J1YbFa fgnVFLMefrtFgH3pukADKrJtk6FlxWxAK9mZoRBx0HWBc0cqmUpoxkVK5Tsz 5CcOui7kSsBn7219s8sBQ5nODEVNJXRd4E431vdcR94r3JmhsI+DrgvceSJj J36QeUXd7GoYC44hgq4L/Ak+9WgJ2lG0M0PxqBK6LuQh7mmCMIU7M5RIB6Dr Ar+pbB3FBoolOjOUJg66LmQAP9JGJ3YBbanODCWIg64L68Qt5FwGWtiR93tW dNt+RZ0ZShMnR9eFML1V9L5bhaiJGjfzrqxFC4QEj1BRZ4YyJS+Jui5sizg5 sL9dF2Qmbq+7LkhL3L53XajlN30kA7oufIRM360DXRdWQUcjdqINUHOwec9D 3TqD74+TD/CNjQBACfwPVI9BKw== "], {{0, 71}, {147, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], BaseStyle->"ImageGraphics", ImageSize->{179., Automatic}, ImageSizeRaw->{147, 71}, PlotRange->{{0, 147}, {0, 71}}]], "Text", CellChangeTimes->{3.6336700305411263`*^9}], Cell["\<\ Selleks, et kulud oleksid v\[ADoubleDot]himad, leiame selle \ v\[OTilde]rratuses\[UDoubleDot]steemi need lahendid, mille korral avaldise c = x + 3 y v\[ADoubleDot]\[ADoubleDot]rtus oleks v\[ADoubleDot]him.\ \>", "Text", CellChangeTimes->{{3.633669990246256*^9, 3.633669996689067*^9}, 3.633671758772107*^9}] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["N\[ADoubleDot]ide 4.", FontWeight->"Bold"], " Tammesalu ja Viljaanni jahuveskid jahvatavad 250 ja 350 tonni jahu kuus. \ Neist veskitest veetakse jahu kolme leivatehasesse. Rukkivere tehas vajab 150 \ tonni, Ahjusaare tehas 240 tonni ja Leivam\[ADoubleDot]e tehas 210 tonni jahu \ kuus. Kuidas korraldada jahu vedu veskitest nii, et k\[OTilde]ik tehased \ saaksid oma koguse jahu k\[ADoubleDot]tte ja veokulud oleksid minimaalsed? \ Kaugused veskite ja tehaste vahel on j\[ADoubleDot]rgnevas tabelis olevate \ arvude kordsed." }], "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633669252124558*^9, 3.6336692604861727`*^9}, { 3.633669374799574*^9, 3.6336694140180426`*^9}, 3.633673044795663*^9, 3.6336731164307604`*^9, {3.633673154701949*^9, 3.633673169523797*^9}}], Cell[CellGroupData[{ Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztnb2LI0mah8XdGfcvyDzKLa+8sfLOkFNrDHu0s0bCCu7aaGNh79BRxkAb B2sIChYGFhoExXADDU1CwTDQFIiGZWAoVozTLIVgjaYp5DRLI2Q0RSHilJGZ kZGZkV9SZElV8Tywy3QpM/LrjTd+8fG+8S/D3/36P/+h1+v91z9v/u/Xv/2f f/3973979u//tPnHv539938M/3HzH/+3+d9fNseE/y0AAAAAAAAAAAAAAAAA AAAAAAAAAADgSdBL2PeNwD7BDEBoZoAlAMDu4E9AYAYgQWAAgEXwJyAwA5Ag MADAIvgTEJgBSBAYAGAR/AkIzAAkCAwAsAj+BARmABIEBgBYBH8CAjMACQID ACyCPwGBGYAEgQEAFsGfgMAMQILAAACL4E9AYAYgQWAAgEXwJyAwA5AgMADA IvgTEJgBSBAYAGAR/AkIzAAkCAwAsAj+BARmABIEBgBYBH8CAjMACQIDACyC PwGBGYAEgQEAFsGfgMAMQILAAACLPEJ/spxPX4/946Px7L7DU9armwu/3+t5 L6eLu+1u9BFxWGawXswuX428Yz/42Picu8X0pddz5Xt1xOMUGG5VVYBHxHb+ 5H42PurV4Y0mQXA5W6xt3etqPn0zDj2JpJFa2OKU5MzZ2Gt/1mOly2ZlvZye 9b3z2aqBIWS+11EbgfEx8I/anwUZrAiMGudgvzq5VVUBHhE7+ZPVTTAaJAUc ++PX0/lS/nC3mAVj/zj6oe9/e22hZ/FlPhn6oxdeC0e1xSkKt7pFHQqM9Ydg uLGEk9H0U92hm5bia+17tZIKjGBYwIrAiMk4h40TOL+KnYN13KqqAI+IHf1J 2lspNt7r2+lZ4mEadmDrkd3hdmphi1OcozuBsZ5PIiPoj6bNGhj1vRiLeGhs Cgzt0/d6zybzL7sX+MRZvZ+EnbK+d3YVD/vGLrTvjYK5Hf8J8KDs6k8WgV8x OrC6HntR2973xter3W41Qnmt5mphi1NcozOB8Wk6OknKbtrKJKoVgfHQ2BUY YjkdxbNdz4MFNa8GbWopfl3aX7zxzIr7BHhQuhUY2vSotdY9uWKL8rY4xTG6 EhhpExOKzMHkpkk3DIGxLywLjLSBRGA0gBEMeHJ0LDDuF8Hz5AqWnAwCowO6 ERhf5pNnm77XVZCojGYzZQiMfYHAAACLIDBAdCQw1jeTwVE4apHOlDVZ6onA 2BsIDACwSMcCQ5uCH0zmeuc1H8ymTzJqEyvFhsaoFtRt6KepA7Y4RaiQSXVj KhAyc4bx3gw/iSi9w/cquGbzRkaTH2aGde9R1o6v5Onr1fztOBo4zQ2TNi2t ETableT+wrWa/RfB7V08lCFpstSzIDA2L2QyiiRK3x9fzc2z0bnsGVsbWFJY kMTLbq75Zrp59x+C8x8XhovqX2HzmV4F04o7bHJwMwMwFLiTDYhDExjNny5f VcVOtbXFN80l2Nl8rI2lRgu+jv3xW+173S1mPyQ/bQr8zvwgsQ33G1y65SsC 2Ae7+pNKgbG+DYZxXTkeBh8Mg+PxtGPPsIop/amBwEivtanX3+eTb7Q7ZeMl 3mnJM/QbW86vztUPff/ixjDg/3k2Pt3U9LPprf7benF15p0kPke1GptShpOb ZXLM7HLTkKYe78Nqdp78s6d3/5uU1gqbzUp8i2F0qpITrQIKMgJDj0XqmW2p 8N40a9nCwOKwx8Ho4jq2idX8KrIHP1gYSki+9XpxHVuHaUlzg4ObG4DowAbE IQmMZk9XUVXFlrW14Tc1JNhZzoMz7WNFdxTNCS5vJsN+/qdCUG3ppY/9yfui xujCAADssqs/KRcY0v6TEBK1bCmPmkMpLpNWPzURGDINQlnNanVKOLCvO4Pc jd3dBi8qg143vfXf5NqXyBXkJZaaOIi7+XrARVj8b/7wv8+HG694v5oHYacm 8UjNSmuHzWZFIhXF6Xj2OfmDerr6pZ6pwHjz0/TsedLQJ+kOwjLOpktVRq6v mlML7Q1MGkBhpEW2RBmBET9R5sg46UevoKOaHNzUAEQ3NiAORmA0fbqaqira 19aG3zT3pTaFX72f/G6YtvXBKJ0T/NvN5PlADVmk6UGyFSG5SvbSyQNmDL7N KwLYK7v6E4PACLsVgeqIVYxph1gRGLLvUJFmZ4tTUh9SuDEVGZGb9ImffuMT fmNoXAzrG9XEge5q0qwdJV6iVWlNsdmshMjmOPN+tOeqW+qZtkt5+aeesWgt 6qddBUY02GKYytl896EmMMyqteQOWxxcawCiIxsQhyIw2j5deVUVLWtrq2+a +VL++bXehdJ+6g1GwU3mtoy3FF8692hll+7KAADssqs/Ma1kSOrcOKjPE767 wJDDj9VJ/LY4paoti4ZVN+g99Jiwecq6stIGS/dC2imJVza7iLalNcRmsyIi F1pYz9l4qWfFIs/yn0qspb2BxZcwNO6fppO3dQKj1bBb5Q2UtxEd2YA4DIHR /ukqqqpoV1tbfVPt+QzDI8ox5qbVhDYuoZ2WzCHmPrrZerszAAC77OpP8iMY 6Zhks2G6HQVGE6mw1SlVN1aRnXLTszjNtp56HE05mqupjKFoXVpDdjWDDNIG CoO6zZd6biUwyn7acgRD3mXl4Fs0pp0fYymbdmlxcF0QTVc2IA5CYGzxdFVV VbSqra2+qagMT1PPXhQYalJPPy2+dM5nGh+tQwMAsMuu/qQ4RZJOWZYtrNLZ RWBcvQ+XTjWIfNzilGqvpZ4x14xueu5HuYY1DlhoXt0r25fWpTVkVzPQUdGp xV+aLfXcr8DQDVieN5pULOPXTsvMDNbE2FYdXCcwurIBcRACY4unqxEYbWpr /syab2pRYNRc2hADhYKAw2dXf2Ja5KkFj9RmCN9eYPQ976u48tWlb9rilBqv pYYic8snvjnNN6ymZWPVF65qX1qX1hB7zco6G/hQRtUc8Z4Fhshv1CXPHl2U zvfFsYphNOvlz7M3JWU2PrhOYHRlA+IgBMYWT1cnMFrUVkWzb9qJwIiDsmVw 9F/nhkfr0AAA7LKrPzFHkSRbW4YYpj41dhnB+OlDPB1TEaWy7Sm1XkutKFBz nYblnSJ1Jo2nRCvbl9alNcResxJ6v3LX12ip5/4FRsjdYvadlpGgF0YLnv+U tZn4GG25UUWZTQ+uExhd2YA4CIGxxdPVCozmtVW0+6aWBYa6tNp51vhoHRoA gF26ERhCW1tVPVyw2xqMNElCSZ6NrU+p91pqRUE84bKeT06HwW2+RJXTqWJS YL3887tfGq3BaF1aQ2w1K3ISpHIGqsFSz8MQGBFajq+8zcTJDbLzgGVltji4 4RSJdRsQByEwtni6BgKjaW1t9U3tCozk0pm7Mj5ahwYAYJdd/UlFoq1GW6mq Lu22USTpVcqHSrY4pYHXUjNBssO+8WDPTS2mtrLR4NCigj4E33xfiCIxti+t S2uIpWZF3l5Nx6p+qadVgdHewIqkKY9Ut1HNBOWcvLHMVgfXCoyubEDsV2Cs bybPL+brLZ6uicBoUlvbfaYQawJDWWnZpfVH69AAAOyyqz+pyuSpT8eXNuWt Aw/zlVrLv1Q2VLLFKY28VhKA338R/PXH0cBclLaysTjGHr2lPw61ueDq9qVt aQ2x06yE0anV40IhtUs9rQqM1gZ2P/vTNwahmHzr2IZU7oVc02kss9XB9Vux dGQDYp8CI/QVp/LVtn+6RgKjQW1t95lCrAmMnHXVPFp3BgBgl139Sc1eJNpE SUnUakkQmZ4NL7sg0FCp09hYs6Tf4pSG3aIkev0rzytdMJaNSsikB4l2vDjK vJmaNAgtS2uIjWalLDq1SJrV0zi0ZVdgtDWwTTnHhqGVxB7i9kKlD81pJGXw +m20Org+D0ZHNiCsCwyVUapWYIRPNIiHFFo/XUOBUVtb232mEGsCo+WlOzMA ALvs6E+0pAElLYteF7yzYF7MDaPS4SbZ8GQdGQ5fXU2Gyd0d+3946cs8iubk NunKCkObtcUpxUnbkudXyYqr4i61sJoi+atXZe9pX1pDdjQDdVfNVrbrgfyG oa2KN9Dgp+Iec1sYWHEcJrIH9fd0mDrJ4B1tBvG173vRhwjlwXpx/W3wy32r g+sNQHRjA8K6wEiz8FVvQCObUc2BtHy6ZlVV1NbWdp9JaNZozvtalkE0vQ2l u9Lc433/2+vw0ndSKJReuiMDALDLTv4kE81nHKwLydaFwWgSTDMyQ8vNpWpI uMjqTmuGkl0C9SvmkmWl3uxYKvrkpy1OEfpGKtXZPOLJ07qGVe8vZ11BLpgl 3YHLtB1S29Ias5MZ6AEXVeGcCfoz9gr5rCq+l77xWeHllA9utDGwtJyNSbxO DDXaNitj4QYPL/VzdhPXeOOqFgc3MgDRhQ0IuwIj5xxM23Xpe4yWjy/VPF3j qipqa2urb5qxxnxuLn13s9y+h3qEXfpaSi79WUs5Xtzozb4BANhlO3+S3wo7 Q3E41ODhcyuoM/txx+N9sp/rjSbxRqe5LbYTohFIc8byX/n+ieHPVadsbv6z 6ULl6wCNabGNZHdgLKRSL0vQVzK8XFNaO9TF2p9q3Be7bLDaeLB6zC/mNxB+ r5KXo40/Vy5daGJgqpxwDUa4sWmgNs4Od83Ob9Gr718Z6pNpvDd30u5owYYN D/57OwMQlm1AWBIYlc6hDFMNqn86o0+oXLJbU1sbftMSa5Q+reTx5Uc0+5yo spRcOhacfZnvrSCLbBsAgF2Ule/7RmCfPAEzqF0bCbXozd6+7wUAHj34ExBP wgwSgVGz0g8qQGAAgEXwJyCehBkku6A2CWMBMwgMALAI/gTEUzCDhqttoQoE BgBYBH8C4vGZQZwqLYnpE8m6u+qNb6AGBAYAWAR/AuLxmUEhZUGY/v00Gw8I rUFgAIBF8CcgHqMZrOZXaXxemsUCdgGBAQAWwZ+AwAxAgsAAAIvgT0BgBiBB YACARfAnIDADkCAwAMAi+BMQmAFIEBgAYBH8CQjMACQIDACwCP4EBGYAEgQG AFgEfwICMwAJAgMALII/AYEZgASBAQAWwZ+AwAxAgsCAVvQAAAAA2oDAAAAA AOsgMAAAAMA6u02eAIRgTiAwA5DQvgCARfAnIDADkCAwAMAi+BMQmAFIEBgA YBH8CQjMACQIDACwCP4EBGYAEgQGAFgEfwICMwAJAgMALII/AYEZgASBAQAW wZ+AwAxAgsAAAIvgT0BgBiBBYACARfAnIDADkCAwAMAi+BMQmAFIEBgAYBH8 CQjMACQIDACwCP4EBGYAEgQGAFgEfwICMwAJAgMALII/AYEZgASBAQAWwZ+A wAxAgsAAeLKs5tM3Y7/vjWerB7sm/gQEZgASBAZYZTUbe732HI1n9/u+9afE ejELNsoifrsIjH1xdxu8CL+CHyz2fSsPjNNmEAv7+A30/fGb6fzhauAhgcAQ 4vNsfGpq9I6HwYf1vm/usfEx8I/CGnWVrVCLwDcqiU1DeDHynPTAXbL5Cqe+ r5QeAmM/rG+DYdTKuGfezprBenF15vV7BfrD4Na95gSBkTqBvEGcTZfuGcSu bJq2Z+PZ5/yfywRGiOzlueeBu+fTdHSCwNgb6w/B8Dh+F+6Zt6NmsLoeeyf+ OJgt7uS/l/PpZBTrjb43vnZtHMN5gVE2fNEfTG6QF+35GJx9Ny++uCqBsXHF N5OzS9c8cPfcL4LnCIw9IWXzV57HCIZDfJlPhsVx77QP616n1XGBIT/9yWj6 ad838lRY31ycv1sW/14tMDZ97fPXBlkCO4HA2BvSsZyOf347PkJgOMPy3fjc OEaxER7P5Mt4HizcWmvmtsCQ330woWnrnBqBAV2AwNgT4eTISTgefj9DYOz7 Rh6SL6uV0bslNZERDKdYTkcMXzwMCIw9gMDYC3JyxDufrdYCgeGuGehENdHF aXeHBYYatup7o1dB8G6+cu3jPyBtBcZ6Mbv8fuwna+Sib2QO9VrOp683RyYF r1fhsqqBPOvYH7/VPuvdYvZD8tOmwO+ShVjdlVZ8kMFo8oPxSD2wNI5r23SE z3/MN0wt3oxJYKgmL0bXHrkQ4yM/+GgotQ5X/UlMPDkSrXNGYLhqBlnC5dZ9 /+LGvSbGXYERDl/0spQ3E7AjrQTG6v0kbEAHZ1MZ17VeXJ9HLW92GXY22FwW vJwHZ17uq0Z9SbG8mRSihbyXU/W57ZYmkQFrJ4ks2WiVt7Ew6A8nN/pClfXq 5sLvD0YX14t1fDNX0b3kGqaGbyamfAQjLqf6JwRGe9TkSPRPBIabZpBB1u5B 3jk4gqsCQw1fFOj754mbB2u0EBhxcGV/NE3b4DTi79lk/kU/THE0vno/+d0w bc2DJDrsZDT9283k+UCpx9VNkIw8JIOWdkuTtyzVRX5JeRjFFimCF8Ft4nDW N5NBP/O8ITK+KdMwNXwzioopkiY/ITDaok2ORCAwXDQDnch1fG2I3HcDVwVG QjjgHARa11WS9BDBFs0FRnJk9kAlCHMN4no5PeublaH2U28wCm4y7agav8os 8bVYmhQDeluTf5BUjaznk0FONqhih1rD1O7NCATGA5OZHIlAYLhnBgl3i9mP WsNy7J//5GDH1XWBkbKcX52nMkPvYMLu7CowSls95cINBauLFt27HDQwXMZS aaWaQRcqiRqJL2owuU/Tyds6gVGhBxAYD0g4lOTlB6wQGK6ZQYxMaFzAwWSe CAyd9eKn82T5nKl1gG1pLjCiMf/8KoXyVs/c7EYnVbj3xAPkTrNTmrrbSrJq RNpcIcX6Lm8GgfFwhJMjR8XmA4HhlhnkyA1i9BzcfgKBkSPNJO9ezHKHbB+m ul7N3wUTuV/JoxEYcThG02fVc0qHbf5o0mhrpLo3g8B4INar2blnHPNEYDhk BmXoK7h6rqVdQmAUUIPYD5o94ImzjcCII0bDmM3Ln2dvHtEIhmk1ZjXpStFU ZlzMyuZsm70ZBMbDILefMPdMERjumEEVUoJGr8OxfisCw0C8Zg+BYY92AuNu Mftuo/n7ctOgaJ3Co5oiSf7ZrrcSP7VWI4sLw9q8GQTGg5DPLFKNM0rDNTOo QS3TcixbOALDRNRAIDDs0UJgxCkmsnlpHpfAUBmriqGjivXyz+9+MbwKffvF XnbStuWbQWA8CAgMI66ZQR1JtJdjqYwRGCZke+HYWFa3NBUYaiwx1zQ/LoGR ZlkpXTe+/hB8833p+EaaQUsNg7R/M1UqomIeEIFhD6ZIMIOYuFq5FjuAwDBg TnwEO9BUYKiEV7mBxMclMLTAEHP8+0Yt/HGY5MG4n/3pG8OGOMmryK7raPFm KvciSZ6m4iwExs4gMDCDmKjT4dzWVwiMAlFX8dTZ3Gud0FRgqPjxXD9dprV8 PAIjFxiiLZlINh05SoMONgUfG9Rs0tDHl2v/ZioFhpJAWSGtr3jfcm8m/EkK AgMziIg6reTBcB4Zpnpk2tkBtiedp66ZeNJSuMdbe0RbeHzt+17a6q0X198G 0QIGVbI5E6YhXaekZM2VxdJkXsdeCZmtQ+RFiwHy0atQf2/9ZrRTTGMR6p5V zlKpfIbDV1eTYXKfx/4fXvrDdo0j/iQFgeGQGcSTmJv6dDXPOY8oh7yL25G4 KTDiZBeZjqXaz7LvnV05mNO1O/T0ZbUpcw3tsncWzJfZpXRqt6/b6VkyF5HP QKXvR5bL/X63mL701P1M3q+Sa9ssLRf/rquLrIElj3bsj19PY9cU5ZXNvKt2 b0bP6JJfFxrfduj0cncWHnanZQkr3fu1Agf9SSkIDIfMQN/fKrdx4XAwCtzc rVt3L/u+l4dDmyLPe9iqVIrQjuqElmXhWtquo2EDN40rZtL6Jx2EksLlJEXJ wn55RTVZk+HE939lrzRtSiK7SWtO0savSa7BkLvivFLTE97o1WX+yIZvRhQ2 XtefRkeLWEnvTL5YbzQpXL4h6nLbnPzEQGA4ZQabOnyhEt9FnmA0CS6n+QEN h9Bfxr7v5SG5k6MVqlsd+vNgW48KAAon/QnkwQxAuCswAKAT8CcgMAOQIDAA wCL4ExCYAUgQGABgEfwJCMwAJAgMALAI/gQEZgASBAYAWAR/AgIzAAkCAwAs gj8BgRmABIEBABbBn4DADECCwAAAi+BPQGAGIEFgAIBF8CcgMAOQIDAAwCL4 ExCYAUgQGABgEfwJCMwAJAgMALAI/gQEZgASBAYAWAR/AgIzAAkCAwAsgj8B gRmABIEBh816dXPh93s97+V0cZf/cTWfvhn7fW88W2V/uFtMX3q9krMeN5Uv 5ADAn4DADECCwAB7rGZjr2fmyA8+mk75GPhHhYOfB4v7YplH45n663oxC8Zh MyspCgxVbNl1Hy/mF3I4OO9PPs/Gp6YqcDwMPqz3fXMPhvNmoHO3mP0YvFEO S/dvTxwERpa72+BFaAV+sNj3rTxS1ovri9FAM6vB6OJ6UeVYN7Xvu5EX1b1j f/x2vtKPNnbYN/rh1PeVmGEE44Bw3J+sb4Nhv2egfzZduqMvXDeDBM25eaNJ cDmdL/d9Sw8KAkMndQ4IjF1YfwiGx70W3ez1cnrW7/W98fWq9tiUT9PRSYnA gL3htj8pG77oDyY3DskL181AsulrnctBi74/vpq76aEQGCl6s4jA2IlIMEQ0 GQ/8Mp88a9/Fu18EzxEYh4bL/kT2UE5G00/7vpH947IZhKzeT3zZmhzqSOPD gMBIkJMjX3keIxhWWN9MBv2mfbfw4KOWwxcCgXGYOOxPpE4eTOZODVWU4LAZ aH1Vt9WFQGAkyK7H6fjnt+MjBIYVpLONqHO56/lk0Hs2mX9peQkExiHirj9Z TkcMXyS4awbpNNnpePZ53zezZxAYIaHgPAl70PczBIY1Qn8bWVa115X1cZt+ HwLjEHHVnyhF3fdGr4LgXXatsnO4agbr1ezci8yg9ZDsEwSBEU+OeOezjUNA YNgkXfDWH01LF0/X9vtKk11UCoz1Ynb5auQdm8NUw1+/H/vJkpuoUZiWLMRq eHD+isv59HV8Vt8fBzNDKM0Wp1S9kIPAUX+SyumeZiffzVwdIXfUDFbX42iW vf8iuHX00+sgMOLJkWgsC4FhFTn3EVE2AyLVnXl553o1f/emKtmFWWCEjfZk 5MVnmfJgxOuvBmfT27XQFnsbOx1NDt60+Lkrrm+nZ3qsbqHwLU6pfyEHgZP+ RJsQzKsM/7w6SvuJ4qQZpIvbq7pULuG6wFCTI9E/ERiWUZGkJQOGcnmneRVo uky0lcDIZe4qCoz4ljIeIA0gygmhJgerZ0yu+OZdMHw2mkzlIHmStqKnZ0LY 4pQmL+QgcNufbNRtoKVUikjUqUs4aQaqXp+Mpn+bTy+DtBNRNST5hHFbYGiT IxEIDMuoGUljoqHo1+rlnRXJLiqmSFSPsiAwFoEf/ZDJz6GOzxbV4mCtD9sf Tm707ov6KTcTtMUp1S/kIHDYn+gs51fnqcxwb8DcRTPQp8l0PbGaX42TYc+z K6dEhssCIzM5EoHAsE5VvGrYVtaNJZY0/SEVAkP91FBglBzf5uDEdgyTMmU/ bXFK5Qs5CJz1J0XWi5/Ok6U7ro2ZO2gGqvXo6Z3WGLUgzdGM8U5ZQkg40O3l vzUCwz5J9vVeIV61UVhfExVhaGpLG+hogiM/YlAiMNoc/FAC49BjZxz1JyWs F1dn8ao/UoU/bVTFLBGTanzDJUtwVWCErd7RMMjPjCIwusAcryp74gapn8O2 wMgTrpwMqheFNjsYgRHhpD+pQC38O9Dv1RHumUEqMEq2R9BXaLiSLMVJgSGn /o2zogiMTkgXG/SVqKtY3pmhO4ERx4T2/fGby59nb0qmVBofjMCIcM+f1BEL 7AP9Xh3hnhnUCow0xuQw90HuAhcFRhiqfGKeCENgdIO2xWS0pFPWtUYr37oQ GPEWh9o6rPI1G40PRmBEOOdP6okimw70e3WEe2ZQrx9U84LAeMKkS3GagNKw QxqYKScomyzvjLAuMJY3k1Ds9P2Lm3R2pkxgtDgYgRHhmj9pgBQYLs28CyfN QKX9KfVs8aJxh7bWRWAgMB6ETLzq1fWrQdNE/XYFhrqNXGysUTO0OhiBEeOa P6lHBlIRRfL0URFzZRsfxAKDNRiuwhRJd+TyRDXdfMSuwFADKblN5I2aodXB CIwY/EmWSKY6t++Vk2agFpuZc/vEldqlsSwERgYERoekc5RtBgntCgyV5zPn AVSUun58q4MRGDH4Ex0Zpnrk4L5XjppBvBeJMXFx5DfIg+EwCIxOSXcCaq7h K3JalqfrLG2gteSZ3stpuBHVejV/O/a/9n0vVT7rxfW3wS/3rQ6uWuJVsrhr i1OqX8hB4KA/iZNd5JJBrxezYOz3nUveGOGgGUjUvGpuzCrO/98v5kZ40iAw MiAwuiVuHJvPR6d5ivIrLat+EuUjAFo8S4J3FsyX2ZU58eYRLQ5ONyhRaiS9 ZLqLmf7TFqfUPfUh4KA/0Tb1y7KRHFclW/Q+dRw0g4S7xfSll/n6Ud74vjcK 5odXYTsFgZEBgdExssmu3nxEsZqNvYLLjgSD8adMZ798iiEahYha9kGyv1ja pvf986v5ss3Bf1fx7xlCE7ov+en1X1qfsvmp4oUcEOrO9n0jD8mdHK1I5GK4 Ufur4NK9ra00nDSDlOyezqE9uGkOuqva970cAAiMp0LjTJ5gGfwJCMwAJAgM eJIkAuNAV0I+YfAnIDADkCAw4EniYETYgYA/AYEZgASBAU+ROEDDtexGhwD+ BARmABIEBjx+khAw/9vrOOAiWirpXHajQwB/AgIzAAkCAx4/hYQVYcKN0yjU FB4Y/AkIzAAkCAx4CqzmV2M/SVkxGE1+mC1q92mFTsCfgMAMQILAAACL4E9A YAYgQWAAgEXwJyAwA5AgMADAIvgTEJgBSBAYAGAR/AkIzAAkCAwAsAj+BARm ABIEBgBYBH8CAjMACQIDACyCPwGBGYAEgQEAFsGfgMAMQILAAACL4E9AYAYg QWAAgEXwJyAwA5AgMAAAAAAAAAAAAAAAAAAU/w+LcsIs "], {{0, 164}, {715, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], BaseStyle->"ImageGraphics", ImageSize->{619., Automatic}, ImageSizeRaw->{715, 164}, PlotRange->{{0, 715}, {0, 164}}]], "Text", CellChangeTimes->{3.6336742004667635`*^9, 3.633675144721772*^9}], Cell[CellGroupData[{ Cell["\<\ Veetagu Tammesalust Rukkiverre x tonni ja Ahjusaarde y tonni jahu. \ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633669252124558*^9, 3.6336692604861727`*^9}, { 3.633669374799574*^9, 3.6336694140180426`*^9}, 3.633673044795663*^9, 3.6336731164307604`*^9, {3.633673154701949*^9, 3.6336731911940365`*^9}}], Cell[CellGroupData[{ Cell["\<\ Et Rukkivere vajab 150 t, siis Viljaannilt peab ta saama (150 - x) t jahu. \ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633669252124558*^9, 3.6336692604861727`*^9}, { 3.633669374799574*^9, 3.6336694140180426`*^9}, 3.633673044795663*^9, 3.6336731164307604`*^9, {3.633673154701949*^9, 3.6336732030507145`*^9}}], Cell[CellGroupData[{ Cell["\<\ Et Ahjusaare vajab 240 tonni, siis Viljaannilt peab ta saama veel juurde (240 \ - y) tonni jahu. \ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633669252124558*^9, 3.6336692604861727`*^9}, { 3.633669374799574*^9, 3.6336694140180426`*^9}, 3.633673044795663*^9, 3.6336731164307604`*^9, {3.633673154701949*^9, 3.6336732105821457`*^9}}], Cell[CellGroupData[{ Cell["\<\ Et Tammesalu suudab toota 250 tonni jahu kuus ja Rukkiverre ning Ahjusaarde \ kokku veetakse sellest x + y tonni, siis Tammesalust veetakse Leivam\ \[ADoubleDot]ele (250 - x - y) t jahu. \ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633669252124558*^9, 3.6336692604861727`*^9}, { 3.633669374799574*^9, 3.6336694140180426`*^9}, 3.633673044795663*^9, 3.6336731164307604`*^9, {3.633673154701949*^9, 3.6336732258960214`*^9}}], Cell[CellGroupData[{ Cell["\<\ \[CapitalUDoubleDot]lej\[ADoubleDot]\[ADoubleDot]nud 210 - (250 - x - y) = x \ + y - 40 tonni saab Leivam\[ADoubleDot]e Viljaannilt.\ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633669252124558*^9, 3.6336692604861727`*^9}, { 3.633669374799574*^9, 3.6336694140180426`*^9}, 3.633673044795663*^9, 3.6336731164307604`*^9, {3.633673154701949*^9, 3.633673236231612*^9}}], Cell[CellGroupData[{ Cell["Seega n\[ADoubleDot]eks vedude plaan v\[ADoubleDot]lja nii: ", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633669252124558*^9, 3.6336692604861727`*^9}, { 3.633669374799574*^9, 3.6336694140180426`*^9}, 3.633673044795663*^9, 3.6336731164307604`*^9, {3.633673154701949*^9, 3.633673253028573*^9}, { 3.6336733208134503`*^9, 3.633673335541293*^9}}], Cell[CellGroupData[{ Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztnc2L40iaxs3uHvZf8HHJa97q1ifvHnzJOTSz1KUPgjHs5qEODb2LFh8K 6jAwB4OhoWAgQZDU0lBQCAqagSLBFAwNjVnTeyiaxDCHokl8KZbC+FCYxMRK oVAoJEVIIVlhhaznBzN0pfUZevTGo/h4458m3/7+3/9uMBj8xz8G//f7P/zX P3/33R+m//oPwT/+Zfqf/zb5++A//jv43/8G24T/TQAAAAAAAAAAAAAA6DeD mLYvBLQJZACIIAMoAQDQLIgtgEAGgAKzAQAwBGILIJABoMBsAAAMgdgCCGQA KDAbAABDILYAAhkACswGAMAQiC2AQAaAArMBADAEYgsgkAGgwGwAAAyB2AII ZAAoMBsAAEMgtgACGQAKzAYAwBCILYBABoACswEAMARiCyCQAaDAbAAADIHY AghkACgwGwAAQyC2AAIZAArMBgDAEIgtgEAGgAKzAQAwBGILIJABoMBsAAAM gdgCCGQAKDAbAABDILYAAhkACswGAMAQHYwt2/Xi9cy5vJitHg3uctjd3zrD wWD0YrHZ17vQDmGXDA6b1dsbd3Tp+L9p77PfLF6MBn15Xoboptno16sKQEep F1seV7OLQRkj1/P9t6vNoalr3a0Xb2ZhVKFoOYcau8R7rmaj6nt1FZNVzGG7 mA5H89VOQwip53VRxWz85jsX1fcCKRoxGyXBofnXqV+vKgAd5ajYsrv33XF8 gEtn9nqx3tIf9puVP3Muox+GzstlA18cX9bexHGfjSoErRq7cPr1uWTQbBw+ +pNACU/cxaeyTYNa42vheVWyDWjZaIBGzAYjFRyCIDC/Y8Ghcfr1qgLQUY6M LclXTL4iPzwspnG00fywLYd+JldzDjV26R3mzMZh7UUiGLoLvcqGPy+0UZya Js2G8OgHg6fe+svxBzxzdh+88ANtOJreseZgFkKHI9dfNxM/AWiNY2PLxncK Wg12y9koqueHo9lyd9ylRvAIpu8cauzSN4yZjU8L90l8bN0aJ3awMBunplmz QbYLl/WIXfsbvHklCN1PrLiEv4xmq0bCJwCtYdZsCN2pjdX08RkrHK/GLj3D lNlIqpvQcI69e53PM5iNtmjYbCSVJcyGBmjZAGeNYbPxuPGv4zM0FHBgNgxg xmx8WXtPg2+yOz92HHq9aTAbbQGzAQAwBMwGIIbMxuHeG1+ErRlJb5rOMFGY jdaA2QAAGMKw2RC67MfeWvyozU6QEzslhc6XfKUjdQ78MsTd+AY1diF8Gia/ MD65MrWH9NokP5EofcQPfJJOUCKu9+NKMn4+ygryFd39sFu/m0WNq5mmVN2j adFkFRNfXzjOc/jMf9izJg6KzjDRnNkICsRzI7sydGZ3a3nvdSY7R22BxQfz 4zm4wTnfLIKy/+jP/7KRnFR8CsFjuvEXBVeouXELGiC2mQ39u8u+quSot7Xy Y+IJfIInFSg1GiB26czeCQ9rv1n9GP8UHPCV/EaYhocap65YRAC0zbGxpdBs HB78CXtvLif+R0kDOuumHEhGQCU/aZiN5FzBO/5DNrlHtV2CiPFeSM4hXth2 fTfnPwyd23tJp8Dn1ewqeOuniwfxt8Pmbjp6EscfXn0ER5l499t4m9XboFJN ot/H3Woe/3MgNgvoHK0STVYx7BLDGa/cWlSamJAyG+KcpoFcS7lyE9RSQ2Bs KuXYvV0yTezWd5EeHH8jOUL8rA+bJVOHbDi03sYtaoDYZDb07q7gVSU131bN ZypJ4LNd+1PhSUVXFPUbbu+9yTD7U26irvLUl473Ie83TAgAAHMcG1vUZoO+ C/FUFD7kKQvvZ8kPt+Y/6ZgNmmZB9ZZV2iVs/BcDQ+bC9g/+s8KJtMFX/DeZ uiYKC1m7xTsX2Oe/OHEjPPw3f/rj9SSIkI+7tR9+7MTRSe9o1WiyiqFQd3E1 W32O/8DvrnyYaGI23vy0mF7HlX6cTiE8xnSx5cfIfMNmnEN1gVEB5FpgaK2U MhvsjlJbsqQig5yn0ty4TQ0Qa8yG7t2VvKqk+tta7zEFB7/74H07Sep93036 Df92712PeVNGkn4k/SLEZ0mfOr7BlOCrFBEA1nBsbJGYjfBzw+dfZwXt3iGN mA36TVGQ0qfGLkk8yV0Yn2GR6Rhidx/Eh28kFY1kbCTvXBDDTpIVRBExKh1N lyarmBBaNafKR7ivsmGiSR2VtYL8HvNq4T8dazaiRhhJd0/w3CeC2ZA7WMUV Vtq4JQ0QW8xG1btTv6qk4tta/zE586X4OSX8NBi7/n3qsqSXxE6duTXVqU0J AABzHBtbZCMf4vdv5pfnKj/ebNAmyuLkgTV2KarXoqbXAPHLnRFWVemwpqy8 xIgk7BJHaHm4qHo0TZqsYkgUTnNjQbWHiRYMEFX/pFBLdYGxU0hq+U8L712Z 2ajUHKe65nY0QOwwG9XvruBVJdXe1pqPSdZswgNjpuuNCO0Vwm5xP2PmicvV a04AAJjj2NiSbdlI2i31mvKONBs6tqHWLkUXVpAVM/jiuErXpOJ8HDVC2Cmc i1H5aJocK4MUVAO5hl/9YaK1zIbqp5otG/QqCxvlonbvbNuLqmumysYtaYBY YTZq3F3Rq0oqva0VH1PRNDd+73mzwTv+xN3YqTMxU3prBgUAgDmOjS35bpSk i1M1KEvkGLNx9yEcdqUxm7LGLsURjN9jpkoNvugvMpUsm/ig/+oXVjSVj6bJ sTIQ4TNe87/oDRNt12yIAqb7uV7BdABht1TvYcm83ZKNW9EAscJs1Li7ErNR 5W3N7lnyTBs0GyWnlsylgpsA3eLY2CIbICpMQinNUl7fbAxHo6/Yi1iWKqrG LiURjDdXZoZbPL/KVrKyIWfFJy6qaCofTZPmqphDevaEiqI+5ZbNBskuIkb3 dm+VfYJs/mM4Q/btz6s3imNW2bgVDRArzEaNuyszGxXeVo7eMzViNthEbzrh +te15NYMCgAAcxwbW+SzUeIlOEMkXaUCx7Rs/PSRddkUzHapu0tpBOMjEHjf qGRoKEkCi3YXamFFU/lomjRXxYSRUB0GtYaJtm82Qvab1Ssh48EgnIE4/ymt GbaNMDyp4JgVNm5FA8QKs1Hj7krNhv7bSqo904bNBj81XyFXemsGBQCAOcyY DSKMyypuRjhuzEaShEGRx6P2LuURjI9AYJ0yh7V3NfEfskfk+aMKOg4O27++ /0VrzEblo2nSVBVDO0oKe6k0honaYTYihHxiWc2w5AnpvkLVMStt3I4GiBVm o8bdaZgN3be12mNq1GzEp05dlfTWDAoAAHMcG1sKknppLfnKP3XrzkZJzqJu Qqmxi0YE471F9EM+iGbXstpTGBUpCW7RgT76z3/IzUaRVjSVj6ZJQ1UMvbyS D67yYaKNmo3qAsuTpFfin5O8tygT8KXHrLRxyW2a0wBp12wc7r3r2/Whxt3p mA2dt7XyY2rObHCVqk4t3ppBAQBgjmNjS1EGUbH7XlmtV57MmH3BhVxPqiaU GrtoRbB4gv/wmf/rX9yx/FDCqMh8O3xUSt9PhL7j4pVBqh5Nk2aqmHDGa3F7 UUjpMNFGzUZlgT2u/vxcYhrjZ800xHM7ZKpR6TErbVxym8SYBkibZiOMFVe0 aKvfnZbZ0HhbKz+m5sxGRl0lt2ZOAACY49jYUrI2itCZopgJq5iYJmbhSw8m lLzgyXxbudWvsYvm51I8O/6r0Ug52Cw9uyGVfiRageMiVTLFORaqHk2TJqoY 1YzXPEk2UWmTV7Nmo6rAguNcSppcYj2wuoOnLc34JS548TIqbSzey0k1QBo3 Gzx7VanZCO9ozJoaKt+dptkofVsrP6bmzEbFUxsTAADmODK2CEkJFLWM+F6M pv46n4eGp+SNs/DR92UyubnzJvHVXTp/euHQ/I3yRDrJSAxJ/VVjl3wnr+L+ ecLkormcwvScPNmzF2UKqn40TY6UAb8qvRHyYqIASZNXQQlo/JRf/66GwPLt M5Ee+N+Tpuw4hXi0OMXXjjOKHkToEw6b5Uv/l8dKG5fcpljazWqANG42kox/ xQvi0CpVCCAV707vVSWlb2v9xyTPN6vKXJpcBvdgSf7zofNyGZ56T02D8tSG BACAOY6KLakZgtIGvZD0ezF2PX+RshxCHjD+toQDtPZClRSvZiieMZOYK4ls l9Tpxz/V2IWIC7sUZwthna1llaz4HZ0OC5lJMcnqYLKlmqoeTZujZCBO3Cia Ihoj3uMglzur4HmJi7LlCkfd6FFFYMlxAkm8joUaLemVUrgk2lMvnV5sli2q VWnjtjRAmjUbmeAgW0pMXAtV3e5UcnfaryopfVurPSZRjdk8YOLKa5k1GcWZ ekmxKE79WUh7nl+ErnkBAGCOerElu3x3inyTqSTaZ0Zip9YQZ22C9Pt35Hps QdbMsuAxUSulPGv67xznieTPRbsEF/9ZdiL1GEJpam4p6ZUic+ncVYkBFU3Q JUerBj9Z9V2la3mrGrSlG/Pb/CIvgfB5KQpHaKMuHOegIzB+nHDMRrj6qs8X +w5X+s4uJSyusxl6lQVbTzyug4QJjPobt6kB0pDZKAwOKmRvUPndSWNC4XDf krf1uMdEY5ri9ukTlMec6GVRnJo5zyHNLZezSE0LAABzcMW3fSGgTc5ABsWD KoEOYhXY9rUAAM4KxBZAzkIGsdkoGSUICoDZAAAYArEFkLOQQbxaq850GCAH ZgMAYAjEFkDOQQaaI3VBETAbAABDILYA0j0ZsLRs8TxBEo/ZK16IB5QAswEA MARiCyDdk0EuJUKYgv4qPccQVAZmAwBgCMQWQLoog936Lpnzl2TJAMcAswEA MARiCyCQAaDAbAAADIHYAghkACgwGwAAQyC2AAIZAArMBgDAEIgtgEAGgAKz AQAwBGILIJABoMBsAAAMgdgCCGQAKDAbAABDILYAAhkACswGAMAQiC2AQAaA ArMBADAEYgsgkAGgwGyA2gwAAAAAAKoAswEAAAAAo8BsAAAAAMAoVc0GAMVA WoBABoCCugYAYAjEFkAgA0CB2QAAGAKxBRDIAFBgNgAAhkBsAQQyABSYDQCA IRBbAIEMAAVmAwBgCMQWQCADQIHZAAAYArEFEMgAUGA2AACGQGwBBDIAFJgN AIAhEFsAgQwABWYDAGAIxBZAIANAgdkAABgCsQUQyABQYDYAAIZAbAEEMgAU mA0AgCEQWwCBDAAFZgMAYAjEFkAgA0CB2QAAGAKxBRDIAFBgNgAAhkBsAQQy ABSYDQB6wW69eDNzhqPZaneycyK2AAIZAArMBjDGbjUbDapzMVs9tn3p58Rh s/IDl8FKF2YDnBrIAJBjzAb7UGL7Dp3Zm7erzaF0t8+r2ZWshrmc+B/le6di 5dj1Futd+WmABfzmOxehMu7Wqept4ztSVxE86Fs3dCeOvznxlZ4zwVO4chzu +mA2wKmBDACpaTYOu/tbbjNEhs7L5WZftOeDP5HtOBhOF1uJhThs7qaj4WA0 9ddb+s+f5s4l/yewm6Caezpbfc7+WWU2QvYP/rMhzEbzfFq4T2A2QCtABoDU MhtKw8C+nOYrZcuDqlljOPbu8/swpzF85j8IBma7cIOzZ/4IbOQ3f/pqnX+u RWYjeOr33vQtzEbTPG78a5gN0AqQASB1zEb0iTR2vR9XrBFjT/s5LrlzGM2W 0nBGXcoTd/FJ6zyHj/7kUna0L2vvaXiaif+A7hSbOdzfzt9LWqCKzUYgsPlr iUUBRwGzAVoDMgCkutmghuFK0jZ+eFhMx4OiSoSahLGnV48cdqv5SBEbD2uP nknbtwCrKDEbwAQwG6A1IANAKpuNw3bx/ErW5RESdXCEXPubXC0S/qpvD+Iu ZulYjsfV7IKeR9e6AJuA2WgBmA3QGpABIJXNxm41n0tHclL4ILS82WB9H2G3 iHvj++9LZpRw3yK3E3SaQ8hTb/1F47KBTVQ1G4fN6u0PqX66QEKLtazK3K4X r4Mt4wMfduuF50YNbpfO7J2guv1m9WP8U3DAVyvJwOZmj5a/EbEvMrshn4AV zvMKJ2B99Od/yQ5lqVAyMrPBTTtD9CGZacsXjv+b5KhloJYBBDIAlIpmo5g4 QOUrkaTRg6OOyWH7yZRtLp+YwCMhelI6SCWzsfvghZXpeLqgI3QOm+U8qoXT g3nSE7HpgbdrfzpKay4evby993JjnEcvFlyNzR6NQkc7P4ktSuBb3jGTMJx4 9+LAlmiq19i9XbKJ5Lv1XXQtmXdBs2QY6pYNdpzin2A2KhE83/e+71MRZTqd +aOPH1wP6KkMgjASiMC/cUcXklcyGpSYff3PGTFAHn0w1rIxdBfp4uPNGjmG znyZT86RbK+ojko3MIR9MaSLeq5gNmSKYiOHB0K7Fm9S4/bg7oP37SSp2X13 FNmBwJ3+7d67HnOju7v34xaJeEpUs0ejl0ydRjaTzG45i44jTq063HvjYe4N otO4UmZDs2Q4Bd0oOj/BbOiTy2WXTNDbbxYvkt96M8W7hzLIthrmxwPwMNg/ GTSgBBonB9laWNxgs3rLqmqBfO2cvK2K6ojHwLyxMYd1MaSretY3G/GW6Q25 1cxUjkKDWNbECj8Nxq5/n6pT5X12DR6NGgPJlPCkb5E7k2jws0TVwWEnwkOs VjIEZqMFEucZNcAedvev3Km/3n3ZLF86w0vH+3C60TOt0mMZ8GbP3MvFPw16 M/JQrKyOOxKbP6I3I3W7vpsnliObNIMPyVCFuMRstFCNWhdDuqbnY82Gsgbk 7kty4ALfxUxy7jQNHU3pH0TTEj8gdlJJGplPC+9dmdko8AYwG20QN16FT3+3 nLuv7nuZ/bjXMmBfH9Ie/zCH4cXpvpdbpjmzQT/fquTaYulAI7uRKnC7zQax L4Z0S8/6ZkPeDaSuAeVVcLRTbB0kgon1ltmtmaMJWi0g7UzoK5FL835MycBs tEPcHDr+3vfmvc1D2GsZsFghfYO+rL3r/gw7bMhsRM0a6vVNVLtFOUIHmS4A 682GbTGkW3quP/WVjpnx6PopnTEbTCq695qMu4jqf7oWkMZuJSUDs9EOvPFK meqwD/RbBiwg5CNAmLTqyqY2Z8M0YzbCL/2L0fROYyG2DPxlFAMdH6GnCnGl gzpMY1sM6ZSe65gNNguVrvf38+pNh1o2VKOm1ST9dInluFUucqhXMjAbbcFa HWsW4HnQbxmwCJANI+FnxTfK8Y3nSBNmIxwqP3Rua3YlsJdRDHSlk0242ZAv qhKRHT+phXbKo1oxxNgldUrP1czGfrN65Y6GQWXqswq3W90o8T+rDZthdy3I 4NKZ/5Q2HFVKBmajLeIxPCccym4d/ZZBXFulYsX+wf92bMWH6ukQa7VaB6DL dBYtvlZKFI3FQJcMnFO8obzpo708G3bFkE7puYLZYGNf01a2W2aDG+OCBHSH 7V/f/yIpim2YRSyxHGI3ZcWSgdloh8Nu9dIZPanuNs+Kfssg/nYWBBA2OI+P qTQ7yXFmg075zOUvqggNzplpm8VzNvmAf2le9FNgWwzplJ51zQZfHydTTXfL bCTNdMqJWoeP/vMflCpKsnXx51u9ZIochbQrs/SAWvS7lqH9y5PbX5eRWPqb 7rjfMohfIh5Hgvf92m1/pN/JOcJs0Ih3/FLv0ixGfJicdG2UOJVBawu/WhdD OqVnXbOhyn7fLbMhTDCRdIUQ+h59P4l7Ax9Xf34uaayLiyI9DqRCyRSujRLf TcFeMBs1+LyafRt2YhZNFusF/ZZBbOZZXbZ/8N3rijMpzoO6ZoMmVb5QpaYM 4ufNTOvNir7R8nnA+NeWpCpve9VXC2NIp/SsazZUK+DQdJrdMRuZCSbCEIt4 EZSLxLEHB76UdMzFlT47XfWSKTQb3A6lPb+YK7VocFQBPa5l9pvFH52oEzNu iU0U8fDu9n3rQeN09FgGIXG0CD4N9sGXhVNnJsU5UMtsFDsNmrDrQtYikT9Q OPVVlmeb8BCdn+7B2qVbatawNIZ0SM/JKFlps1WCkOWeddVFOeG/dpxRUgMe NsuXfjTggR9ZnoFTtbSfoleuwaOFXVrZ1VMS9yEqnJ40P4U8Kgr+98olI+wi a6Pg18xzpVIXNJnc3HmT+DovnT+9cCbVZpr3q5aJQlb4RHZB0U8mfDhNupdz 9+F29rpX2b36JYM87LPl6c3i7fPWkzK1R3Wzsad5MlWRMw6gQnxmyTRSX3R8 YcthwYRZFqLTPTXSP5qlEzGkI3oWM7kpuhWEjfN19Gjqr7fpST18JbKHxTTu r8hmuxLXSsukxxdTzQvZX5s9WqqVIPWiZPQf39qlM3u9WEcnjdLtpsqqWsmI CW2yY0rZZYfDvDNXFm62FzKSKdeoLYAfrdJeXYU32Q0yK/EJM+W/+04IIH2h XzLIw4VxymrLPsTworF5ehEQJameBaHPOhvOinIk0l3pCpjBhi+X7PONRmwa V4+9c306EUNs13NxIk3VQF9hddSwsluwVd1jJxB8iN+FSlAcnDY5KaYb0zOK T1ZQr+P8rrmjCd0W6cVkM+6bFRMds0EXEbrhXRgj9+ZtdkvNkiGSNX2SuxER Zr4kV0YLduR6udNrwk9XZ+fuEblQ2XrWbP3cy3jZ337RMxnkiKKGbQtinhwx /pRvLQ+nObLN43vaisG/Z8Pg6WuHrzDw8tSIR8S9I+hCDIGegX30vZYBlL7L IAzOp10N3EqqmQ1gLdAzsA/EFkD6LoP9ZjFze7PCbwEwG2cB9AxsBLEFkF7L AJE5AWaj+0DPwFIQWwDprwy2a/+5zRMDTwzMRseBnoG9ILYA0icZRNO+wrQM 2/XdbDJGZBaA2egc0DPoCogtgPRIBuLMr5J5/T0EZqNrQM+gMyC2ANIjGbBF i6Sz2gHMRteAnkFnQGwBBDIAFJgNAIAhEFsAgQwABWYDAGAIxBZAIANAgdkA ABgCsQUQyABQYDYAAIZAbAEEMgAUmA0AgCEQWwCBDAAFZgMAYAjEFkAgA0CB 2QAAGAKxBRDIAFBgNkB3OOzub53hYDB6sdjssz/u1os3M2c4mq0yq8TsN4sX o4Fir25TWCAWgNgCCGQAKDAbwAxiptMMF47/m2yX33znIrfxtb95zB/zYrbi fz1sVv4srHIpebPBD6s6b3eRF4g9WBNbDrv1e99zR1rF9Hk1u5Lp9nLif5Sn 0UtJcOx6i/UO+fYS2pcB+xJhlzF0Zm/eVk2JuH/wn4UHcPxNwVZQghqYDWs4 QzEfNstbdyxIbOzeLgvf8f1m9codRbd36czepe9O+iEfeIkrx+HGBi0bFtF6 bAlel7dCLaPjyQ4P/oRvLzKcLrYS7UZrFQ1GU3+9pf/8ae5c8n8C0rIM4nck /zydl0vttyZRhTo+QwnFwGxYwtmK+fDRn1zqh/pgh+1iOhwMR7PlrnTbhE8L 94nCbIDWaDm2HO69ydTz/cRulCtQ1awxHHv3eavBXsnhM/9BqLa2Czc4X+aP PaZFGSitY8RovtL5WBODmCI+QwmlwGxYwTmLOTIPEWKfiIova++p6itSzePG v4bZsA1bYkvgOsZDHbNB66Yn7uKT3mGj1zZvjKmGgx8m/oO97Y6noz0ZRN8g Y9f7ccUaMfa0aTgOtlofNbTN+avRqOBjEErQoANmY+M7WpVUdzl3MfNQr/g8 zG18UbFZg8Bs2Ik1sSUet1NiNujbNPbWWq8SWxJRKrnD2qPdh9q+5axpSwbU Ol7NVp/zPyymcfeulv+8mv38bnahis9QghYwG63TAzEzRxRSFsnp7Tz11l8q ngJmw0asiS16ZiNsJ9R/j+KeO2kr3OOKvc661uWcaUkGh+3i+ZXq6yZqEw4p rFzCr7wn4bcPf6CS+AwlaAGz0TI9EXPyahcHc9pjXudGYDZsxJrYomM2uCUe jtwb339fMvSaS1ouVz4HqoZzPjdakkHwiTZX98byUV4FlQttc47GdRTEZyhB D5iNVumPmJNxd0N3oRzPWvppqUymUWg2wjkJN+7oUj71Nfz1h1Q3blDXLNZy y6K5cfaM2/XiNdtr6Mx82bS7GrsUFYgVWBNbNMxG4ocHwsN9tZJPWBBGIskH WfFZyTY3OZ4Ia2QgEj8gtSRSvTDK+Awl6AKz0SK9EnPc3VNgiqj1kg8NDfMk vClKpiE3G2EF7rkjtpcsz8bugxdW6OPpgo55OWyW8+gsspFjOhsHtX/mjGIH Ma/FxIPX2KW8QKzAmthSajaEnr4MQ2cuma6dbK84ZOkG5qBJRdgcnMyIheCn dzNRwyfBGhmIsJYN5bcPb3OO/qmMz7YqIYgqgQj84PtFNgQuGgQ4nHj3p5vJ KL5VRxzGpLyPMRv2FXj67F0Wc2V4u6ViBDgdGiofQZoMMVXVrVKzkckSljcb soCTzAzKmCKdjfk9xmd8896fPI3ToQhT/hNPVWMXnQKxAmtqGc0BopE9FefK RuRjV2k6NS7Iwqa85skl00tmd8YJZwbSOGMQa2QgwN4g2fDREKHNOUIZn21U Ar9YRv4LLqxVW5PBEUowLO+6ZsPOAo/ptphrwYe5SgefRL8W9wQVJNMo6Ebh ZixnNmIBpAuWb58+VIWNhc/krJXlP2WaoWrsUlwgVnB0bGkKbbORsF3fzRPL kZ1dXpqWNnkr2wgvQdi491k+vUg2gWt95U799e7LZvnSGV463oeTKcYaGXBY LFJN4pNMY1HGZ5uVsL33oiwjufjAv5JOONJPrI2PPZYheR/bjWJXgbMzn4mY K1I0BzasN8vMksIGhBSYDf6TptlQbF9l4/hhSh6Z6qcauxQWiBVYU8vUMBsh LG9eJNmUOLvwVu6WMzqdPrzy3XLuvrpvKduwNTLgUJeuSk8U1gujbGr6jsZn NhJJ2sMefvBenPD7tEmzQY6Sd7YhQgu91S5sKvCQcxJzNeKU7IOcwdOadajj KCTVrrKylvejKcxGlY1PZTZsn4NjTS1T02wQnkxvkGmO68RbGTeKjr/3vXmL ef+skUFE1KyhWumG1gj5Fo+Oxmd22dJrCz5Vrk85zE+suZs4ngF5Hz9A1KYC PzcxV0U+B5Z+oZenDm7abGSJl+vSsrJFG8NsRFhTy9Q3G8IIbbGQeQeWSiQ2 rJHHr7xq8v+GsUYGlPCL+GI0vZNN76I+RNrioYzPliuBKT9/6rB1/eqkTfpN mw0D8m5gNoo9BX5+Yq5KMjgh6TAtGBqawpzZYPNM6XKQP6/eKLpdtDeG2Yiw ppY5xmxwhywflqM4JH8rS7Lm1mrR1X7c7MpbXu/YGhmQaA7+0LmVN7mHPuSJ vMWj/gB+LSUYkwGrPrLXFrbTfqMYHGsK8dKbOWLj8m7AbNQs8OYF0J6Y7UFY GikaDkoNqtbyLibMBltnVkhloR7job0xzEZEw7GlPseZDba7WMjJhHTFQCP+ jdDqhPR4lFS7Q8etkUFuWH6aagGfBWrLlRDXDqlqJSiHb8cnb+wSC6+ZIzYu 7wbMhi0Ffo5irkEy2ZPekc7Q0IjGzQYbPJz+0lGZjQobw2xENBxb6tOE2chM oSqey5aMhW4xR9Bht3rpjOi71mp6YTtkQKdGjl4s1MvK14rPlish/lYVBBB+ 7o31lrttFLHwmjieAXk3YDZsKfBzFHMNUnNg75Y3Y+Vs9wzNmg1+GZn5tlL/ UGljmA1Go7HlGI4zG/QVy/phPpdNmoYuHpvU5gqJu+VscvvrMhJPm+mFLZCB uv9ak4IMz1YrIQ4RXPnB1V67rYwWbthsmJB3A2bDogJX0lUx1yKTk0rXlzZr NlSLI0j9Q6WNYTYYFtQyEUcNEKU+M++HeZOjJNBZsDzi59Xs2/Cai+binYi2 ZUAz412okjcGz/dmVlo4RWtX2ayE+NpY3bF/8N1r+TQc4zRqNszIuwGzYVGB K+mqmOsh5GCvMNSkWbOhWlOGL+Mibl9pY5gNRtu1DOfIqa+y/MOEfwXkB8Oz ptT2/P9+s/ijE11VbOyTL62Hd7fvTxorWpVBsdOgqdsupEskpCmKzzYrgV94 UIfud6vvHfk0nFPQnNkwJu8m1kaxp8CVdFbMNYlTssiba+QU5NJUpwlVVtZC 0k7Wkxul1v/acUaJCzpsli/9Xx4rbZxYqXzlxp9z+qcauxQXiBVYZzYUYmPJ NDIL3h02K3/mDIeKaZJ0k2i0c7p9XvpH40QhIhTnLlDhZMJHFqU7kXcfbmev T5zdqz0Z7Gk+yUExWgPGiuOzVUrIwHrhn94s3j5vL7EbOdJsWCzvLNYUuJLu irkmsU3SHkicpFfKjtIs+omoWwaEeTExo6m/3qaH1rB1MSpsnCyYwp1Jcspk hTXxpxq7lN21DdSPLU0irC8zkOcxFlYJzNRDzuxOsf5v+uBD5+WSWVDfDR4K 1YaxO5LBR3ZldSKkI/juOyFKn46WZJBeLEOJnlEvi88WKSEDF0bb1YRY6JV3 tljeWawpcCXdFXNdaPWtObAnt/5OSGQepD+lGgHU3RB8lcCAcbz2WVK/D535 XVK2Ohv/X5JgTSR8po+Kn17/T+Vdgp8KCsQi+JW1dH5FAQ7yb9metmLEfi9c XP7Gf7vSbP9MLS48cj3tHRslmi0VXPmrVWbCBVut+NKZvVu3EYrbkYFYPRWg 2bJaHp9D7FBCmujK21pvVEAs9ep72yvvLNYUuJLuitl6tDOIgoZp22wAK4AM 2iQMf3WXXG+U48xGd7CmwMHpic2GpaMoz5hexBZQBmTQHvvNYuaecIXfAvph NiwqcHB6mNmoMBIVNEMPYgsoBzJoCbsqvh6YDbsKHJwcNoKo3YzN/eTcYwvQ AjJog+3af27VvMtzNxvWFTgwTGYYLYlHCWomKQVNctaxBegCGZyGaHpamAZh u76bTcaWVXznZzYsL3BgmFxCjDChxxWG67TCmcUWUA/I4CSIM9QunflPtlV8 Z2c2bC9wYJxdYDJ5Ip+x6/2YnSoFTsV5xRZQE8jgJLD1mzKp6ezh7MyG7QUO QH84r9gCagIZAHKGZgMAYAuILYBABoACswEAMARiCyCQAaDAbAAADIHYAghk ACgwGwAAQyC2AAIZAArMBgDAEIgtgEAGgAKzAQAwBGILIJABoMBsAAAMgdgC CGQAKDAbAABDILYAAhkACswGAMAQiC2AQAaAArMBAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAMDZ8/9l56xP "], {{0, 163}, {719, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], BaseStyle->"ImageGraphics", ImageSize->{582., Automatic}, ImageSizeRaw->{719, 163}, PlotRange->{{0, 719}, {0, 163}}]], "Text", CellChangeTimes->{3.6336742512926707`*^9, 3.6336751889082994`*^9}], Cell[CellGroupData[{ Cell["\<\ Et leida vedude kogumaksumust, selleks tuleb korrutada selles tabelis olevad \ arvud eelmises tabelis olevate vastavate arvudega ja tulemused liita. Saame \ avaldise \ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633669252124558*^9, 3.6336692604861727`*^9}, { 3.633669374799574*^9, 3.6336694140180426`*^9}, 3.633673044795663*^9, 3.6336731164307604`*^9, {3.633673154701949*^9, 3.633673253028573*^9}, { 3.6336733208134503`*^9, 3.6336733456608715`*^9}}], Cell[CellGroupData[{ Cell["\<\ c = 4x + 3y + 5(250 - x - y) + 5(150 - x) + 6(240 - y) + 4(x + y - 40) = - 2x \ - 4y + 3280. \ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633669252124558*^9, 3.6336692604861727`*^9}, { 3.633669374799574*^9, 3.6336694140180426`*^9}, 3.633673044795663*^9, 3.6336731164307604`*^9, {3.633673154701949*^9, 3.633673253028573*^9}, { 3.6336733208134503`*^9, 3.6336733704712906`*^9}}], Cell[CellGroupData[{ Cell["\<\ Selle avaldise minimaalseid v\[ADoubleDot]\[ADoubleDot]rtusi otsime lahendite \ piirkonnast. Et veskist leivatehasesse veetava vilja kogus ei saa olla \ negatiivne, siis saame v\[OTilde]rratused: \ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633669252124558*^9, 3.6336692604861727`*^9}, { 3.633669374799574*^9, 3.6336694140180426`*^9}, 3.633673044795663*^9, 3.6336731164307604`*^9, {3.633673154701949*^9, 3.633673253028573*^9}, { 3.6336733208134503`*^9, 3.6336733869432325`*^9}}], Cell[CellGroupData[{ Cell["\<\ x \[GreaterSlantEqual] 0, y \[GreaterSlantEqual] 0, 250 - x - y \ \[GreaterSlantEqual] 0, 150 - x \[GreaterSlantEqual] 0, 240 - y \ \[GreaterSlantEqual] 0, x + y - 40 \[GreaterSlantEqual] 0. \ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633669252124558*^9, 3.6336692604861727`*^9}, { 3.633669374799574*^9, 3.6336694140180426`*^9}, 3.633673044795663*^9, 3.6336731164307604`*^9, {3.633673154701949*^9, 3.633673253028573*^9}, { 3.6336733208134503`*^9, 3.633673507133107*^9}, {3.6336735753020062`*^9, 3.633673598894356*^9}}], Cell[CellGroupData[{ Cell["\<\ Nende v\[OTilde]rratuste poolt m\[ADoubleDot]\[ADoubleDot]ratud tasandiosa \ ongi selle \[UDoubleDot]lesande lahendihulgaks: \ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633669252124558*^9, 3.6336692604861727`*^9}, { 3.633669374799574*^9, 3.6336694140180426`*^9}, 3.633673044795663*^9, 3.6336731164307604`*^9, {3.633673154701949*^9, 3.633673253028573*^9}, { 3.6336733208134503`*^9, 3.633673507133107*^9}, {3.6336735753020062`*^9, 3.6336736224047003`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztvc+LG2m29ylmZjH/gpZDkbuEu/AtLtRKMwvdhRdVePDiFrTg1fU7ycXw 9qVnWkMsCmrhpijETTDdUMYXkVkFhoLKgMSNwZUgDP0amgThaigaIZj7Ytop QWEKI8Qtk4sg5omITGWEIkIKxXmkc+Lo+4VOquWMr05+9Tznoyd+/m/tX9/5 v/6nWq32f/+v5sed//L//u+/+c1/cf7P/8X8n//D+X/+a/t/Nv/x38y/f2D+ F/y3D0EQBEEQBEEQBEEQBEEQtAH98MMP3CVAEARBmvXb3/6WuwQIgiBIsz7+ +OOff/6ZuwoIgiBIrWq12mg04q4CgiAI0qk3b94Y0Hz//ffchUAQBEE69cMP PxjQuK7LXQgEQRCkUwYxBjQ4HwCCIAjakH73u98Z0Ny7d4+7EAiCIEinzFqm Foq7EAiCIEinatfCGc4QBEHQUk1H/dPvuu1m93x29cq7Qfd2ve1eeLnbGLjM QYMznCEIgqB8vR/17l4Bo+70pxFaAtDUand7o/d5mxm4zEGDM5whCIKgFfJe u+39JFne9p0vrrmToeiUs0g4wxmCIAhapWhdEwPNbNDrDWb5G3z99ddz0OAM ZwiCIGiVvGnfqddudfpvw/97eXHaO724XLLB/JQzo48//ng7VUIQBEGVVQI0 3sWzh6ev808ECPThhx/WYtpOlRAEQVB15Y16zVq92Rt6/rtXp39acr6Z0S+/ /FJL6s2bN9uqFIIgCKqkrkHz1+mr5/2lO8385ClnOMMZgiAIKqRpv1Ov1T+9 312108zo5cuXC6DBiWcQBEHQCgWgqTdurtlcpvi5zZG+/vrrjVcIQRAEVVrT F93PziYrFzOh4qec4QxnCIIgaLW8yeCPg4KU8cMnOC+ABmc4QxAEQSldTvqf N5q94cWfj4//VJwyfng7zXv37v3bv/2b+Y/f//730QJnY3VCEARBFVV4N4B6 q3s2KnJcZq43b958+OGHP//8c3SkJjoNwHAHZzhDEARBVjQK5V+fEhCBZv4i BEEQBNlSHDQQBEEQZF0ADQRBELRRATQQBEHQRgXQQBAEQRsVQANBEARtVAAN BEEQtFEBNBAEQdBGBdBAEARBGxVAA0EQBG1UAA0EQRC0UUkCzXR09tA5Hq5z Z1B58kbu4ZPBZMXjTSEIgnZHGwSNN+w167U81Z3+NIYU76Lv3G11n49m8xcv J4Nn7nfdVv1ub/Q+7T4b9XudZmDV6Byv8XiE+ebPu639sJT9VtddhobZebdR r3f608Sr0+D9G+YPrDc638Q2N85up9k+PF+3JAiCIJ3a8IrGm/adeq3e7MXW KbOhacS1Zm9089K7QfeT5INB3496v+k8/qIVkCoDNN6F2643nf6FFzX2xifd wbviVc0Gh40F8DU+72ezxtR2OwBjAjSXF+79+tUm05HrNBqHgxtE+t7kzGke 9IbTDD8IgqAd01ZAkyKFedWZ9+2w7Scb9bXChyCkN/deu+39WOeP2n6mQ2ZR r92D+9cPVog4FSxMEjS8qe3hp42P6knQhJi71em/jdVzKwnKJX8UBEHQbmnD oHnb79yKLV7ej06fB/89/bP7Yt6lh73mrbb7OqsjZ4PGG/WatVifz3plibzR t4fJ3ww3ryUXWaFm593W4ZnbSYImegZQfNdf+pXo7/ogC14QBEG7pc2CZqHZ zgbH7kIvz1nyXCkTNFkvTvsGBnMWhCuOenKJsVTJza9Lu+h/9llv+C6sMPav 0bGnBJWiv2KBdGGdaXhBEATtmDYKmnClcE2E4NDMp6lFx8KSZ0GZoAk3yVg+ 3DT/dUET1nk7eZTn8sLtHATrLG8RNFlUCh0Wdr4tZygEQdCuaJOgiTARV/po S3p1kHZIbhVtkgmahReLKjjE80HbvUicBOceHESvLIIm2s+WBZoi9IEgCFpb uafv7pKyo1mAyOy82/xsEQSZ+6xutBXQBIX92r2InXIWnC3QuX6FCJrEi9wf FARVQ2vPYu16+vQprwNx882taFLf59/2D79dXLmUAE2BXWfr6N2g++vUTrMv Dm9eKb3rLJs+ear6QKI70NsL+5/AXoAvIEYJIegTe6pSQZM+QvH2hfvnxZZb BjSrTwYorOmw99ln/YsEnUKrHIUoKXoyAECzntg7JN2BvQBfQIwSQtAn9lSl giZr3REpfu5ZiWM05NObr3U56Xed7NOqE++2uKIpeHrzmsdoqj6Q6A7sHZLu wF6ALyBGCSHoE3uqQkGTt8QIbjXzm/gyJ5dHgZZcsBm/QHLNCzbDTQxlOr0f Z/FXzo97L9KoSoMmOqstdpZaxgWbftaabpmqPpDoDuwdku7AXoAvIEYJIegT e6oiQRPdtmXhy/x01P82uL1YcqdTeDeYta6jCTeL34JmeNyKt/3rO8zUW8fD bPQYynzeyNgxlsm7DNAs3IJm2GtnYS4svjD+qj6Q6A7sHZLuwF6ALyBGCSHo E3uqwkBz1ZbzldqVlH0FfcpncffazV0x663Ds1HiyPz1rcwyd6blVphzMCUT NH54r+nD8FZs+8l7gc63C5Y5xc9trvpAojuwd0i6A3sBvoAYJYSgT+ypCgNN CW3qtmDpW81sUWv/UVUfSHQH9g5Jd2AvwBcQo4QQ9Ik91eqDxr+6e7NzZvXG +u9enf7pwjK7Cit4ssBaN5Su/ECiO7B3SLoDewG+gBglhABJkwzQBDfWPz9s Nztuxj6o9b1moxeu+8KGVbl3f95t31/3eTTs05O9APYOSXdgL8AXEKOEECBp kgKaQJeT86+q/4TN4bHzMHnMqJDYpyd7Aewdku7AXoAvIEYJIUDSJAk0Oy32 6cleAHuHpDuwF+ALiFFCCJA0ATRCxD492Qtg75B0B/YCfAExSggBkiaARojY pyd7Aewdku7AXoAvIEYJIUDSBNAIEfv0ZC+AvUPSHdgL8AXEKCEESJoAGiFi n57sBbB3SLoDewG+gBglhABJE0AjROzTk70A9g5Jd2AvwBcQo4QQqqTZ6Kz7 4Fj6c3jfj9yvjgflr3QEaISIfXqyF8DeIekO7AX4AmKUEAKnojvSL1Hsblre 5Mxptrtno5v78c5G/V4nvINWs3O85sV4foStVvT29VbXXYaG8I6Uizd49ML3 bwbbNzoJssyGbudu6/BlOdhYAY2CkYkmyV4AMrTiwB6jhBC4Fd50N31fx6BX N2/umpi+f0h0H/joHinBL99O3RN+qQLDBcZFdx5O6/qGkEnQJG5WPHI7i+Vd 9J27rcRN74sKoLHiwD676Q7sBSBDKw7sMUoIgVu5jwiJ3YAxvO9WgiMhnmKd f/FxJCtkNu+05zf4DaGWdTviUAZJnzYDKMVBE2BuP3b34KzHr6x/c61IVkBz cnJC2VzCyESTZC8AGVpxYI9RQgjcCh+zFe/w0z+7wbOuDIAeR4djgqci1u+7 F5c3G4X73BJ3iU+/skTe8PjwxTT5SrgTL8278Pn1Z992kqAp9kDJ8OknuY+q zFUEmo8//vi3ZXXv3r1/+Id/KL250Z07dyibS3AwGfIWQHdgL0BIhm/evFlv CsUkoccCNPwKHvsY32/2fnT8OHkoJEWi7AfyJp8LGa44ij/iKuexktfPfIye WX/zr1kP/8p6fmVYZ/YTxJ7my3GcZcetIGjH9OjRoyXzRb7Mn8BdggUVa6RC lVwIXE7O/9C6nVwCLJLIv97blrV8mHf1dUETPupr4SiPd+EeHLjBYZtF0GRR KVoTNVcWv1rRiubBgwf/vazOzs729vaMyYcffvjDDz+M1peZ2iW2EuVg/nze AugO7AUIyfCXX35ZZwIlRO+QdIcaVjTMiuiQUNaiYKFXR1tlgibzAY6rFRzi +WBh79xr96Bz9coCaCKmZIKmCH1WKQLNv//7v48JOjo6+ru/+zvjc+/evRLz VMLIJDqwz266A3sByNCKA3uMEkLg1GIfng57B7eLLl4sgubdoPtp230de9/g bIGD+StE0GQ/+D5XVkBjBsZgMCjNGgkjE02SvQBkaMWBPUYJITAqvVpJPeo3 EzQFdp2tU8Vs8LC1uNPs1DmMvVJ61xkraMzP0qyRMDLRJCG6JHyI7ENRQgh8 ykCDN3p+miBFJlMKnAxQVN5s+E3ns4UHFodWeQpQUvRkAHbQlGaNhJEJ0EB0 SfgQ2YeihBD4VAgNWUwhn94832hy9plzuvop9osrmoKnN3Meo5mDphxrJIxM gAaiS8KHyD4UJYTApswlQNFfW7xAcs0LNsNNDGU63wxjp6V5k5cPey8z6kmB 5uq+BDc73LIu2PRJZ51ZBE0J1kgYmQANRJeED5F9KEoIgUnh3cPSS5W830wv ChK3oPmx17qVODk5usNMvd0bZnMsuHPa4i1oarnnEqRBs3ALmuFxKwtz4TJn Pfz5mwHNuqyRMDIBGoguCR8i+1CUEMLWFR12iZ/QXGTvWdZR/vldMeutxM02 /ZtbmWWvmCJwpJVXSRZowptqPu+29sP3Pzwbpd8nXOaUvTOAddCsxRoJIxOg geiS8CGyD0UJIVRB6XudFVP6VjPbFO1eZ5sATXHWSBiZAA1El4QPkX0oSgih Ggqa9u2cuyvnyZu9et6PX4O5VZWF44ZBU5A1EkYmQAPRJeFDZB+KEkKoirzJ y8PW3Y47LNS6Z6O+e9rP2J21FQX79O63ac+j2RxoirBGwsgEaKorbzIw06/E tyzrkvAhsg9FCSFUSd7k/LAKT9g8frB4zGgdbQE0K1kjYWTuKGg29zy+LSoA TfRQwkanZwZ0OegQn2wYin0c+gKGooQQIGnaDmiWs0bCyNxF0Gz6eXzbV7Bv wXVLQIf4ZMNrsY9DX8BQlBACJE1bA80S1kgYmbsHmq08j49RIXS+i9ZrK6BD fLLhjdjHoS9gKEoIAZKmbYImjzUSRubOgWZLz+MToWDf2hw6GVfJ2bn1hy9g HPoChqKEECBp2jJoMlkjYWTuHGgytJHn8ZXVdNQ//a7bbt7swgoOEtXb7lon g/oJytQbncfu6eKRJHs3M5TwIfIPRQkhQNK0fdCkWSNhZAI0m3oeXxnFHh11 8xbR/T0K3TI9voSpt7rfLTsp1Obt2fk/RAFDUUII+sSeKnFzFtAssObk5ITy J9BDoDuwz266w6aex1e+oPDBtYlu/7bvfJFnnoJLeu2SKZsPnGL/EH0BQ1FC CPrEnmpFQRNnTbPZpDw/lx4C3YF9dpMdNvY8vvJKLStmg15vkDqgf32bqeVH /Occ+mChPIDGcg0SQtCnpxWX4zhmZJqfLO9+dHS0t7cXscasa1hqsCLzJ3CX sEJLR/Emn8cX/6clysDTwk6ty4vT3mnWzTe8nyY/ZZKt0CKnzK4z7g9zmeQP xSLKjH2XRc+E6EDcnHFFM1/XRKwp8QxoWyHQHdi/RhIcNvw8vvJKIMC7ePbw 9PXqlVLyDLNO77uVe9BwMoDdGiSEoE/sqVYdNEZmXVPuGdC2QqA7sM/u0g4b fx4fQTEEvHt1+qfcItNwcV+Mil/Og9ObrdYgIQR9Yk9VAWjM5uWeAW0rBLoD ++wu57CN5/ERdA2av06X3bHWLHweOuvCJSELTzaMxD4OfQFDUUII+sSeqg7Q jEs9A9pWCHQH9tldwmE7z+MjKdoX9+n9bpGdZhQtf7JhYbGPQ1/AUJQQgj6x p6oGNBTWsH8K7LN7bYctPY+PpvDp5OV6/tpa8mTDwmIfh76AoSghBH1iT1UT aEqzhv1TYJ/dVhzEafqiu3iWgmhJ+BDZh6KEEPSJPVVloCnHGvZPgX12W3GQ JW8y+CPTgwfKSsKHyD4UJYSgT+yp6gPNeH3WsH8K7LPbioMAXU76nzeaveHF n4+P/1QtyvgyPkT2oSghBH1iT1UlaMZrsob9U2Cf3VYcBCi8PIdwlIRXEj5E 9qEoIQR9Yk9VK2jG67CG/VNgn91WHCCiJHyI7ENRQgj6xJ6qYtCMC7OG/VNg n91WHCCiJHyI7ENRQgj6xJ6qbtCMi7GG/VNgn91WHCCiJHyI7ENRQgj6xJ6q etCMC7CG/VNgn91WHCCiJHyI7ENRQgj6xJ7qLoBmvIo17J8C++y24gARJeFD ZB+KEkLQJ/ZUdwQ046WsYf8U2Ge3FQeIKAkfIvtQlBCCPrGnujugGeezhv1T YJ/ddAf2ApChFQf2GCWEoE/sqe4UaMY5rGH/FNhnN92BvQBkaMWBPUYJIegT e6q7BppxFmvYPwX22U13YC8AGVpxYI9RQgj6xJ7qDoJmnGIN+6fAPrvpDuwF IEMrDuwxSghBn9hT3U3QjJOsOTk5oYRAj5F9dtMd2AtAhlYc2GOUEII+sae6 s6AZx1jTbDbLPQPaVozss5vuwF4AMrTiwB6jhBD06WnF5TiOGZnmJ3chJXV0 dLS3txexxqxruMowBXC9tRohQyvSESN3XxcneiZEB+LmlV7RRDLrmog1JZ4B bStG9q+RdAf2ApChFQf2GCWEoE/sqQI0RmZdU+4Z0LZiZJ/ddAf2ApChFQf2 GCWEoE/sqQI0kUO5Z0DbipF9dtMd2AtAhlYc2GOUEII+sacK0MwdKKxBk2Qv ABlacWCPUUII+sSeKkATdyjNGjRJ9gKQoRUH9hglhKBP7KkCNAsO5ViDJsle ADK04sAeo4QQ9Ik9VYAm7VCCNWiS7AUgQysO7DFKCEGf2FMFaDId1mUNmiR7 AcjQigN7jBJC0Cf2VAGaPIe1WIMmyV4AMrTiwB6jhBD0iT1VgGaJQ3HWoEmy F4AMrTiwxyghBH1iTxWgWe5QkDVokuwFIEMrDuwxSghBn9hTBWhWOhRhDZok ewHI0IoDe4wSQtAn9lQBmiIOK1mDJsleADK04sAeo4QQ9Ik9VYCmoMNy1qBJ sheADK04sMcoIQR9Yk8VoCnusIQ1aJLsBSBDKw7sMUoIQZ/YUwVo1nLIYw2a JHsByNCKA3uMEkLQJ/ZUAZp1HTJZgybJXgAytOLAHqOEEPSJPVWApoRDmjVo kuwFIEMrDuwxSghBn9hTBWjKOSywBk2SvQBkaMWBPUYJIegTe6oATWmHOGtO Tk4oMbLPbroDewHI0IoDe4wSQtAn9lQBGorDnDXNZrPcM6Ajsc9uugN7AcjQ igN7jBJC0KenFZfjOGZkmp/chbDp6Ohob28vYo1Z15QzMZvbrWoHhQytSEeM 3H1dnOiZEB2Im+/4iiaSWddErCnxDOhI7F8j6Q7sBSBDKw7sMUoIQZ/YUwVo rDiYdU25Z0BHYp/ddAf2ApChFQf2GCWEoE/sqQI0thz++te//tM//VM51rDP broDewHI0IoDe4wSQtAn9lQBGosO//Ef/1GONeyzm+7AXgAytOLAHqOEEPSJ PVWAxq5DOdawz266A3sByNCKA3uMEkLQJ/ZUARrrDiVYwz676Q7sBSBDKw7s MUoIQZ/YUwVoNuGwLmvYZzfdgb0AZGjFgT1GCSHoE3uqAM2GHNZiDfvspjuw F4AMrTiwxyghBH1iTxWg2ZxDcdawz266A3sByNCKA3uMEkLQJ/ZUAZqNOhRk DfvspjuwF4AMrTiwxyghBH1iTxWg2bRDEdawz266A3sByNCKA3uMEkLQJ/ZU AZotOKxkDfvspjuwF4AMrTiwxyghBH1iTxWg2Y7DnDX//M//nGYN++ymO7AX gAytOLDHKCEEfWJPFaDZmsMS1rDPbroDewHI0IoDe4wSQtAn9lQBmm065LGG fXbTHdgLQIZWHNhjlBCCPrGnCtBs2SGTNeyzm+7AXgAytOLAHqOEEPSJPVWA ZvsOadawz266A3sByNCKA3uMEkLQJ/ZUARoWhwXWsM9uugN7AcjQigN7jBJC 0Cf2VAEaLoc4a9hnN92BvQBkaMWBPUYJIegTe6oADaPDnDVG5Z4BbetzpDuw F8DeIekO7AX4AmKUEII+1SAIgiCr4u7r4sSOb6xo2B3MuiaaHZnXcm7nc6Q7 sBdAby/sfwJ7Ab6AGCWEoE/sqQI0EhxMhkvuG7CFz5HuwF4Ae4ekO7AX4AuI UUII+sSeKkAjwcFkOD9e8/d///dv3rzZ8udId2AvgL1D0h3YC/AFxCghBH1i TxWgkeBgMhzHzg0owZqqDyS6A3uHpDuwF+ALiFFCCPrEnipAI8EhAs2YwJqq DyS6A3uHpDuwF+ALiFFCCPrEnipAI8FhDppxWdZUfSDRHdg7JN2BvQBfQIwS QtAn9lQBGgkOcdCMS7Gm6gOJ7sDeIekO7AX4AmKUEII+sacK0EhwWADNeH3W VH0g0R3YOyTdgb0AX0CMEkLQJ/ZUARoJDmnQjNdkTdUHEt2BvUPSHdgL8AXE KCEEfWJPFaCR4JAJmvE6rKn6QKI7sHdIugN7Ab6AGCWEoE/sqQI0EhzyQDMu zJqqDyS6A3uHpDuwF+ALiFFCCPrEnipAI8FhCWjGxVhT9YFEd2DvkHQH9gJ8 ATFKCEGf2FMFaCQ4LAfNuABrqj6Q6A7sHZLuwF6ALyBGCSHoE3uqAI0Eh5Wg Ga9iTdUHEt2BvUPSHdgL8AXEKCEEfWJPFaCR4FAENOOlrKn6QKI7sHdIugN7 Ab6AGCWEoE/sqQI0EhwKgmacz5qqDyS6A3uHpDuwF+ALiFFCCPrEnipAI8Gh OGjGOayp+kCiO7B3SLoDewG+gBglhKBP7KkCNBIc1gLNOIs1VR9IdAf2Dkl3 YC/AFxCjhBD0iT1VgEaCw7qgGadYU/WBRHdg75B0B/YCfAExSghBn9hTBWgk OJQAzTjJmqOjI8rnSB8J7COZvUPSHdgL8AXEKCEEfWJPFaCR4FAONOMYa/b2 9ko8l9PiSGAfyewdku7AXoAvIEYJIejT04rLcRwzMs1P7kKqLZNh6W1PTk6a zWbEGrOusVhVtUTJEJpLR4zcfV2c6JkQHYibY0VjxaH0iiaSWddErCnxDGhb I4F9JLN/Fac7sBfgC4hRQgj6xJ4qQCPBgQgaI7OuKfcMaFsjAdIhgEal2FMF aCQ40EFjCij3DGhbIwHSIYBGpdhTBWgkOFgBzbjUM6BtjQRIhwAalWJPFaCR 4GALNGMCazA9IR+gUSr2VAEaCQ4WQTMuyxpMT8gHaJSKPVWARoKDXdCMS7EG 0xPyARqlYk8VoJHgYB004/VZg+kJ+QCNUrGnCtBIcNgEaMZrsgbTE/IBGqVi TxWgkeCwIdCM12ENpifkAzRKxZ4qQCPBYXOgGRdmDabnBuVNBqcvRjOPu47V AmhUij1VgEaCw0ZBMy7GGhvTczo6O2zVa4Hqra47mKQ6q3fhtqNfiNTsjeK/ Mxv1e51G+A+d4/P05lVVAJrHnUY9+Lt637luOehMw3SMSb3R+WYwubRfJ0Cj VOypAjQSHDYNmnEB1pCH4rtB93YtoXrDOUvC4m2/cyv2C7c6/bc3/+i9dtu3 rjaZDd3O7Ub3fEarSZ4MLE5dtwR0Li/c+/XG5/2AL9OR6zQah4MNLJEAGpVi TxWgkeCwBdCMV7GGOBLMUuWgfXg2mob/L+yEAUru9kbvb35n1Lvd6U+zDcJG Wnf6U29u2K7f7g7eUaqSrRA633XDNeAK6IRpxLgcQXkDIAZoVIo9VYBGgsN2 QDNeyhraSHg/On48Z8TVK727ZlHT7A2vyWF6436ttt/qPjlN71Tzhr1mvR7H UPoVxQr2rbnX0EnQOVQYZozCWa/YEUCjUuypAjQSHLYGmnE+a2xPT2/ad+o3 O8e82eCwEd+r1nHj397NYqcZp1KgcD+bnV7qzUYv3F6n2XYvIrPZj73Wfo20 9yn0NGhozk3Cv7F+371Y8+hJnDKNTs99tnj8JWRu8njWQrzWBNCoFHuqAI0E h22CZpzDGtvTM/zKvdjJrxp+RJz6vO1nt81oTZT+er+2QopFCt0iygQVlKdY zHMBpgu4zNs+Bpd6q/ud6/ZHufvBpv1OvbawuMtCswUBNCrFnipAI8Fhy6AZ Z7HG8vQMdpQ12u7rzDboTV4eBq1+3qIjpmSCxtaXdm82PG7VTWd+NTx+cGjn jLbwuFKi2xtifuHkFZyGS8Y+xKztQqhlgWbxRboAGpViTxWgkeCwfdCMU6yx Oj2D7/Y3+6kyfyM8z/m6T24BNP7VvriPPnFOs/FXQqllxbtB70nG7rhwSbLq iP/lZPDMdZ90W82FPxmg2bKDPrGnCtBIcGABzTjJmqOjI8pISGh23m09XHX4 I+TI1XGHNXedRccslih7n1j0Lnn74qK3W6Is5CV3ankXzx5mUsz7efJT5oGb OVyuTpNw0wdoUu9yZYldZxtz0KenFZfjOGZkmp/chVRbJkOutz45OWk2g6MN e3t7hjXFN8wd07Mfe51uf/XlhHHQbPpkgEjRMRSrB9DjCPBenz58tmQRd604 XOqNzuNsuMRV6mSAcuOBcSha1Bqf4G6IngnRgbg5VjRWHLhWNJGIz4BOyLvo f/ag2GlXBjTtm4M4Wzi92Ru5vcddy55zBHizV8/7uX94Gi6n/VHxKnB681Yd 9Ik9VYBGggMvaMYha6J1DYk1AWU+6w1j/dObnD88fpHZDBd3r0VXvt+cpWb7 gs3Li/7zV7P/vFlG5e7OWkdz0Ez/ctr/W27Tn77oOuvCJfk+C2nggs1NOugT e6oAjQQHdtAYnZyckNY1hjJOM31gY75byW03Wt3n0XFww5/j7leLu9cSt6D5 sdey0kjNN/9PG90/T4bP3FfvYodpfhq6f3xl4RYu0f69T9rdIjvNKErcgmbY a9dxC5qNOegTe6oAjQQHCaAxDoR9aAs3MUsfQJ/flCY6szfnzKvZ6Cy6ON78 zln+dSVrKDoDuen0rzlgVlKNer31h3M7N6UM//DN9PyU5vcs3Z8j27oAGpVi TxWgkeAgBDRju8drdkJv+93DAmc+VEYAjUqxpwrQSHCQA5oxWLOGLieD/oZu 188lgEal2FMFaCQ4iALNGKxZKm9y5jQ+7Q3/x/nxkxe6KOMDNErFnipAI8FB GmjGYE2+wkt+NniUhFcAjUqxpwrQSHAQCJoxWLOTAmhUij1VgEaCg0zQjMGa 3RNAo1LsqQI0EhzEgmYM1uyYABqVYk8VoJHgIBk0Y7BmlwTQqBR7qgCNBAfh oBmDNTsjgEal2FMFaCQ4yAfNeBVr2Ecye4ekO7AX4AuIUUII+sSeKkAjwaES oBkvZQ37SGbvkHQH9gJ8ATFKCEGf2FMFaCQ4VAU043zWsI9k9g5Jd2AvwBcQ o4QQ9Ik9VYBGgkOFQDPOYQ37SGbvkHQH9gJ8ATFKCEGf2FMFaCQ4VAs04yzW sI9k9g5Jd2AvwBcQo4QQ9Ik9VYBGgkPlQDNOsYZ9JLN3SLoDewG+gBglhKBP 7KkCNBIcqgiacZI1R0dHlIFEH4rsHZLuwF6ALyBGCSHoE3uqAI0Eh4qCZhxj zd7eHvH6GoCGvQBfQIwSQtCnpxWX4zhmZJqf3IVUWyZD7hLK6+TkpNlsRqwx 6xquMiqdoRzpiJG7r4sTPROiA3FzrGisOFR3RRPJrGsi1lDuG0AciuxfxekO 7AX4AmKUEII+sacK0EhwqDpojMy6hniPGoCGvQBfQIwSQtAn9lQBGgkOCkBj NifeDw2gYS/AFxCjhBD0iT1VgEaCgw7QjGn33gRo2AvwBcQoIQR9Yk8VoJHg oAY0YwJrABr2AnwBMUoIQZ/YUwVoJDhoAs24LGsAGvYCfAExSghBn9hTBWgk OCgDzbgUawAa9gJ8ATFKCEGf2FMFaCQ46APNeH3WADTsBfgCYpQQgj6xpwrQ SHBQCZrxmqwBaNgL8AXEKCEEfWJPFaCR4KAVNON1WAPQsBfgC4hRQgj6xJ4q QCPBQTFoxoVZA9CwF+ALiFFCCPrEnipAI8FBN2jGxVgD0LAX4AuIUUII+sSe KkAjwUE9aMYFWAPQsBfgC4hRQgj6xJ4qQCPBYRdAM17FGoCGvQBfQIwSQtAn 9lQBGgkOOwKa8VLWADTsBfgCYpQQgj6xpwrQSHDYHdCM81kD0LAX4AuIUUII +sSeKkAjwWGnQDPOYQ1Aw16ALyBGCSHoE3uqAI0Eh10DzTiLNQANewG+gBgl hKBP7KkCNBIcdhA04xRrABr2AnwBMUoIQZ/YUwVoJDjsJmjGSdYcHR1RhiJ7 h6Q7sBfgC4hRQgj6xJ4qQCPBYWdBM46xZm9vr9wzoCOxd0i6A3sBvoAYJYSg T08rLsdxzMg0P7kLqbZMhtwlcOrk5KTZbEasMeuaciY7nqEt6YiRu6+LEz0T ogNxc6xorDjs8oomklnXRKwp8QzoSOxfxekO7AX4AmKUEII+sacK0EhwAGiM zLqm3DOgI7F3SLoDewG+gBglhKBP7KkCNBIcAJrIodwzoCOxd0i6A3sBvoAY JYSgT+ypAjQSHACauUNp1rB3SLoDewG+gBglhKBP7KkCNBIcAJq4QznWsHdI ugN7Ab6AGCWEoE/sqQI0EhwAmgWHEqxh75B0B/YCfAExSghBn9hTBWgkOAA0 aYd1WcPeIekO7AX4AmKUEII+sacK0EhwAGgyHdZiDXuHpDuwF+ALiFFCCPrE nipAI8EBoMlzKM4a9g5Jd2AvwBcQo4QQ9Ik9VYBGggNAs8ShIGvYOyTdgb0A X0CMEkLQJ/ZUARoJDgDNcocirGHvkHQH9gJ8ATFKCEGf2FMFaCQ4ADQrHVay hr1D0h3YC/AFxCghBH1iTxWgkeAA0BRxWM4a9g5Jd2AvwBcQo4QQ9Ik9VYBG ggNAU9BhCWvYOyTdgb0AX0CMEkLQJ/ZUARoJDgBNcYc81rB3SLoDewG+gBgl hKBP7KkCNBIcAJq1HDJZw94h6Q7sBfgCYpQQgj6xpwrQSHAAaNZ1SLOGvUPS HdgL8AXEKCEEfWJPFaCR4ADQlHBYYA17h6Q7sBfgAzRKxZ4qQCPBAaAp5xBn DXuHpDuwF+ADNErFnipAI8EBoCntMGeNUblnQNuaC3QH9gJ8gEapahAEQZBV cfd1cWLHN1Y0EhxqWNHQHMy6JuowJZ4BbWsu0B3YC/CxolEq9lQBGgkOAA3d wWRY7hnQtuYC3YG9AB+gUSr2VAEaCQ4ADd3BZFjuGdC25gLdgb0AH6BRKvZU ARoJDgAN3SHKkMKaqk9GKw4AjUqxpwrQSHAAaOgO8wxLs6bqk9GKA0CjUuyp AjQSHAAaukM8w3KsqfpktOIA0KgUe6oAjQQHgIbusJBhCdZUfTJacQBoVIo9 VYBGggNAQ3dIZ7gua6o+Ga04ADQqxZ4qQCPBAaChO2RmuBZrqj4ZrTgANCrF nipAI8EBoKE75GVYnDVVn4xWHAAalWJPFaCR4ADQ0B2WZFiQNVWfjFYcABqV Yk8VoJHgANDQHZZnWIQ1VZ+MVhwAGpViTxWgkeAA0NAdVma4kjVVn4xWHAAa lWJPFaCR4ADQ0B2KZLicNVWfjFYcABqVYk8VoJHgANDQHQpmuIQ1VZ+MVhwA GpViTxWgkeAA0NAdimeYx5qqT0YrDgCNSrGnCtBIcABo6A5rZZjJmqpPRisO AI1KsacK0EhwAGjoDutmmGZN1SejFQeARqXYUwVoJDgANHSHEhkusKbqk9GK A0CjUuypAjQSHAAaukO5DOOsOTo6oswF+mxi7wY+QKNU7KkCNBIcABq6Q+kM 56zZ29sr9wxoW7OJvRv4AI1SPa24HMcxI9P85C6k2jIZcpdQeVEyPDk5aTab EWvMusZiVZWTjqHI3dfFiZ4J0YG4OVY0VhywoqE7EDM065qINSWeAW1rNrF3 Ax8rGqViTxWgkeAA0NAd6BmadU25Z0Dbmk3s3cAHaJSKPVWARoIDQEN3sJJh uWdA25pN7N3AB2iUij1VgEaCA0BDd7CVIYU1CnosQKNS7KkCNBIcABq6g8UM S7NGQY8FaFSKPVWARoIDQEN3sJthOdYo6LEAjUqxpwrQSHAAaOgO1jMswRoF PRagUSn2VAEaCQ4ADd1hExmuyxoFPRagUSn2VAEaCQ4ADd1hQxmuxRoFPRag USn2VAEaCQ4ADd1hcxkWZ42CHgvQqBR7qgCNBAeAhu6w0QwLskZBjwVoVIo9 VYBGggNAQ3fYdIZFWKOgxwI0KsWeKkAjwQGgoTtsIcOVrFHQYwEalWJPFaCR 4ADQ0B22k+Fy1ijosQCNSrGnCtBIcABo6A5by3AJaxT0WIBGpdhTBWgkOAA0 dIdtZpjHGgU9FqBRKfZUARoJDgAN3WHLGWayRkGPBWhUij1VgEaCA0BDd9h+ hmnWKOixAI1KsacK0EhwAGjoDiwZLrBGQY8FaFSKPVWARoIDQEN34Mowzpqj oyPGyWjFAaBRKfZUARoJDgAN3YExwzlr9vb2yj0D2spktOIA0KjU04rLcRwz Ms1P7kKqLZMhdwmVF2+GJycnzWYzYo1Z1zBWQpSOocjd18WJngnRgbg5VjRW HLCioTuwZ2jWNRFrSjwD2spktOKAFY1KsacK0EhwYG+SdAf2AiRkaNY15Z4B bWUyWnEAaFSKPVWARoKDhCZZ9U9BSIblngFtZTJacQBoVIo9VYBGgoOQJlnp AuRkWJo17N3AB2iUij1VgEaCg5wmWd0CRGVYjjXs3cAHaJSKPVWARoKDqCZZ 0QKkZViCNezdwAdolIo9VYBGgoO0JlnFAgRmuC5r2LuBD9AoFXuqAI0EB4FN snIFyMxwLdawdwMfoFEq9lQBGgkOMptktQoQm2Fx1rB3Ax+gUSr2VAEaCQ5i m2SFCpCcYUHWsHcDH6BRKvZUARoJDpKbZFUKEJ5hEdawdwMfoFEq9lQBGgkO wptkJQqQn+FK1rB3Ax+gUSr2VAEaCQ7ym6T8AiqR4XLWsHcDH6BRKvZUARoJ DpVoksILqEqGS1jD3g18gEap2FMFaCQ4VKVJSi6gQhnmsYa9G/gAjVKxpwrQ SHCoUJMUW0C1MsxkDXs38AEapWJPFaCR4FCtJimzgMplmGYNezfwARqlYk8V oJHgULkmKbCAKma4wBr2buADNErFnipAI8Ghik1SWgEVzTDOmqOjI8pkpE9n H6BRKvZUARoJDhVtkqIKqG6Gc9bs7e2Vewa0rensAzRK9bTichzHjEzzk7uQ astkyF1C5VXpDE9OTprNZsQas65hrKTSMc7F3dfFiZ4J0YG4OVY0Vhyq+21c TgFVz9CsayLWlHgGtK3p7GNFo1TsqQI0Ehyq3iQlFKAgQ7OuKfcMaFvT2Qdo lIo9VYBGgoOCJslegI4Myz0D2tZ09gEapWJPFaCR4KCjSfIWoCZDCmsAGisO +sSeKkAjwUFNk2R00JRhadYANFYc9Ik9VYBGgoOmJsnloCzDcqwBaKw46BN7 qgCNBAdlTZLFQV+GJVgD0Fhx0Cf2VAEaCQ76muT2HVRmuC5rABorDvrEnipA I8FBZZPcsoPWDNdiDUBjxUGf2FMFaCQ4aG2S23RQnGFx1gA0Vhz0iT1VgEaC g+ImuTUH3RkWZA1AY8VBn9hTBWgkOOhukttxUJ9hEdZIAA0kUADNyvm16c0l OKhvkltw2IUMV7IGoIEyBdAUmV8b3VyCwy40yU077EiGy1kD0ECZAmgKzq/N bS7BYUea5EYddifDJawBaKBMATTF59eGNpfgsDtNcnMOO5VhHmsAGihTAM1a 82sTm0tw2KkmuSGHXcswkzUADZQpgGbd+WV9cwkOu9YkN+GwgxmmWSMSNNPR 2UPneOjZ9pWk9yP3q+PBROzfCNCUmF92N5fgsINN0rrDbma4wJpNgub9qHe3 llaj03OfDSaX2Rt5F33nbqv7fDSb9+DLyeCZ+123Vb/bG73P2uS1296PvcHC r01H/V6nUa/V6o3ON7nvu0TeZHAavn+zN8oAwyr/WfjvQWHNzvH5DVpmQ7dz t3X4UiZsAJpy88vi5hIcdrNJ2nXY2QzjrDk6OqJMZ3/VisYb9YKnTd+0aEON P/Y6zVq93RtOU7/+btD9pNE9n928Ymj1m87jL1r1NEGu3mHad+oxzNQ7/Zjv 5YV7v974vB/0/+nIdRqNw8Fsnc7uDXtt53E3fP8M0KzyDyB4q+GcBTQJyHI7 8ddFVO39OPPFCaApPb9sbS7BYWebpEWHXc5wzpq9vb1yz4CeqwBozFIguR8s WoPU77sX8e//3mxwmAOCaHGUBRoDgtuf9afZ7PAu3Hb9Vqf/Nva+t5IgKybz Ls16GjSr/EMM1Z15eeHv3+4O3t1YzM67jU8Sr8jQ04rLcRwzMs1P7kKqLZMh dwmV145neHJy0mw2I9aYdU1pnyjGnHYVLTcyAJEBoKCZ32q7r7OYkQeasJOb VUyr+91p+oBHuFWsz2e9UkzZoFnlH26VWGGlX4k2yd4px6n8z3RLDsTNsaKx 4rDL38ZtOSBDs66JWFPiGdBzLV3RvO13bmU39mm/U4/vjMpFUqgc0ATLgdhu s4bjjmItPIMO0btcr0GihVWRnWmZoFnln7Waywgk/LW8P5xNAA19frH3B7oD miTdARkamXVNuWdAz7UMNCFNkl/gE/8Ua7lhB879Yp+/68wPj7a7jzsRceK7 47LePdH8iaBZ4Z+E2pI/JPBJ7V3kFkBDn1/s/YHugCZJd0CGkUO5Z0DPlQ+a zE57rQXQ5BwEudZS0Fy92+T8MDhkP+/80XkIWSDIYd8SZZW3yj+qORM0yRdX /O08Amjo84u9P9Ad0CTpDshw7kBhzYrTm/MOiCzsOluy9plbrdy/dHWOwdU7 Vgw0JY4cbVIADX1+sfcHugOaJN0BGcYdSrMmFzTLvqhHi53Y/iIroFk43rFy 11lxbXTXGUCzgc0BGisOaJJ0B2S44FCONXmgWdbSk0uPQJsAzcqTAYprkycD ADSb2BygseKAJkl3QIZphxKsyQHNEjRE5yTvJ85kph+jiWxGvdtt98KLbSX9 9GYco9nI5gCNFQc0SboDMsx0MKz5l3/5l+KsyQZNbvMML5+v7acuh88/ETpQ QdC8G3R/Hb/4cfECyY1csLnEP7pvwM1ZbRkXbPo462wjmwM0VhzQJOkOyHCJ w4MHDwqyJgs0l5P+543kgfLwhmFPuq39WqOTdTPJ8LYA611HE7TxD1qHZ9G1 M+YNjg8P+xdJ58QtYoa9drztX12Gk30znIXq8ri51N9fuAXNj71WBubCPWwp +nALoFkyO7azuQQHNEm6AzJc7lCQNQugubq5WYb2W90nbsb1+/MtTTP/IPXF fvFWZvFrPGcj9+rymcD82/4okxfT0Vl43nPwO/F7dd5c77n0JLRwqRW7lVqq wnz/q3cZnUW3Squ3umej1GIqRJWw/WY+QLNqdmxhcwkOaJJ0B2S40qEIa5bf 62wdLbnX2SblDY8PX6x3trNFCb7XGa8DQCPBAU2S7oAMizisZI090PhXd2+O djRtSd7s1fP+xfrPDrCj9N2qpQigKTI7Nrq5BAc0SboDMizosJw1VkETXeDf bnbcjH1Q1hXcu+Y0Z4fb5hXsUrvfxvNoNrM5QGPFAU2S7oAMizssYY1l0AS6 nJx/pf8Jm8cPsg7ZSBFAU3x2bGhzCQ5oknQHZLiWQx5rNgAaiF8AzVqzYxOb S3BAk6Q7IMN1HTJZA9CoFECz7uywvrkEBzRJugMyLOGQZg1Ao1IATYnZYXdz CQ5oknQHZFjOYYE1AI1KATTlZofFzSU4oEnSHZBhaYc4awAalQJoSs8OW5tL cECTpDsgQ4rDnDV00PB2JCsO+sSeKkAjwQFNku6ADIkOEWuMfvjhB8aWwt4S VSr7NkIQBEFQWXH3dXFixzdWNBIcavg2jgwFFBA9UGA0GjG2FPaWqFLsqQI0 EhzQJOkOyJDuANBoFXuqAI0EBzRJugMypDsANFrFnipAI8EBTZLugAzpDgCN VrGnCtBIcECTpDsgQ7oDQKNV7KkCNBIc0CTpDsiQ7gDQaBV7qgCNBAc0SboD MqQ7ADRaxZ4qQCPBAU2S7oAM6Q4AjVaxpwrQSHBAk6Q7IEO6A0CjVeypAjQS HNAk6Q7IkO4A0GgVe6oAjQQHNEm6AzKkOwA0WsWeKkAjwQFNku6ADOkOAI1W sacK0EhwQJOkOyBDugNAo1XsqQI0EhzQJOkOyJDuANBoFXuqAI0EBzRJugMy pDsANFrFnipAI8EBTZLugAzpDgCNVrGnCtBIcECTpDsgQ7oDQKNV7KkCNBIc 0CTpDsiQ7gDQaBV7qgCNBAc0SboDMqQ7ADRaxZ4qQCPBAU2S7oAM6Q4AjVY9 rbgcxzEj0/zkLqTaMhlyl1B5IUO67ty5Y2J89OgRdyFUcfd1caJnQnQgbo4V jRUHfBunOyBDugNWNFrFnipAI8EBTZLugAzpDgCNVrGnCtBIcECTpDsgQ7oD QKNV7KkCNBIc0CTpDsiQ7gDQaBV7qgCNBAc0SboDMqQ7ADRaxZ4qQCPBAU2S 7oAM6Q4AjVaxpwrQSHBAk6Q7IEO6A0CjVeypAjQSHNAk6Q7IkO4A0GgVe6oA jQQHNEm6AzKkOwA0WsWeKkAjwQFNku6ADOkOAI1WsacK0EhwQJOkOyBDugNA o1XsqQI0EhzQJOkOyJDuANBoFXuqAI0EBzRJugMypDsANFrFnipAI8EBTZLu gAzpDgCNVrGnCtBIcECTpDsgQ7oDQKNV7KkCNBIc0CTpDsiQ7gDQaBV7qgCN BAc0SboDMqQ7ADRaxZ4qQCPBAU2S7oAM6Q4AjVaxpwrQSHBAk6Q7IEO6A0Cj VeypAjQSHNAk6Q7IkO4A0GgVe6oAjQQHNEm6AzKkOwA0WvW04nIcx4xM85O7 kGrLZMhdQuWFDOm6c+eOifHRo0fchVDF3dfFiZ4J0YG4OVY0VhzwbZzugAzp DljRaBV7qgCNBAc0SboDMqQ7ADRaxZ4qQCPBAU2S7oAM6Q4AjVaxpwrQSHBA k6Q7IEO6A0CjVeypAjQSHNAk6Q7IkO4A0GgVe6oAjQQHNEm6AzKkOwA0WsWe KkAjwQFNku6ADOkOAI1WsacK0EhwQJOkOyBDugNAo1XsqQI0EhzQJOkOyJDu ANBoFXuqAI0EBzRJugMypDsANFrFnipAI8EBTZLugAzpDgCNVrGnCtBIcECT pDsgQ7oDQKNV7KkCNBIc0CTpDsiQ7gDQaBV7qgCNBAc0SboDMqQ7ADRaxZ4q QCPBAU2S7oAM6Q4AjVaxpwrQSHBAk6Q7IEO6A0CjVeypAjQSHNAk6Q7IkO4A 0GgVe6oAjQQHNEm6AzKkOwA0WsWeKkAjwQFNku6ADOkOAI1WsacK0EhwQJOk OyBDugNAo1VPKy7HcczIND+5C6m2TIbcJVReyJCuO3fumBgfPXrEXQhV3H1d nOiZEB2Im2NFY8UB38bpDsiQ7oAVjVaxpwrQSHBAk6Q7IEO6A0CjVeypAjQS HNAk6Q7IkO4A0GgVe6oAjQQHNEm6AzKkOwA0WsWeKkAjwQFNku6ADOkOAI1W sacK0EhwQJOkOyBDugNAo1XsqQI0EhzQJOkOyJDuANBoFXuqAI0EBzRJugMy pDsANFrFnipAI8EBTZLugAzpDgCNVrGnCtBIcECTpDsgQ7oDQKNV7KkCNBIc 0CTpDsiQ7gDQaBV7qgCNBAc0SboDMqQ7WAENJFAADX12sE9PugOaJN0BGdId ABqtAmjos4N9etId0CTpDsiQ7gDQaBVAQ58d7NOT7oAmSXdAhnQHgEarABr6 7GCfnnQHNEm6AzKkOwA0WgXQ0GcH+/SkO6BJ0h2QId0BoNEqgIY+O9inJ90B TZLugAzpDgCNVgE09NnBPj3pDmiSdAdkSHcAaLQKoKHPDvbpSXdAk6Q7IEO6 Q0HQeJPBqfuk27rV7A29jH+/vHDv12tz1ZO/5s1G/V6nGfxLo3M8mGQ5VEJV +kMAGvrsYJ+edAc0SboDMqQ7FAGNNzpudx52W/spglxr2u/EMFOrO/3pzW95 F2673nT6F17QqN1O45Pu4B2lBZXS9P8b/UTkgow/pKieVlyO45ihZH5yF1Jt mQy5S6i8kCFdd+7cMTE+evRo/kpe4/JGvWY2aN6Peged/tuczV677f16pz+9 +v/h2qdxOJhteTUwHZ0dtuq1eqv7neuelliMSPlDimrJR7kdB+LmWNFYccC3 cboDMqQ7FD9Gkwea8Ht+LezgzwaTy6ytbsUxlH5lqwp3ArrfddeFjrg/ZJUA GvrsYJ+edAc0SboDMqQ7kEHzbtC9Hdtr1uy4w9nNv5rFzt1a7W5v9P7mtXA/ W2xpQJE3G71we51m272Iypr92Gvt1wouNCLo9DqN2krobPoPsS+Ahj472Kcn 3QFNku6ADOkO9BVNqOmo714dJa/tt93X17/ztt+5tXDIxveGvWa91uyNyPuc wpIihQiIKJM6SFRIM/MXPO406os0udJm/5BNCKChzw726Ul3QJOkOyBDuoMl 0ES6nJz/oVWP9fmoFWf25xIsyKlrNjxu1U1hr4bHDw7P1z34YhBpVjUBYpYt arbxh1gWQEOfHezTk+6AJkl3QIZ0B6ug8a/Pc74+crGl/hwuNz76xDl9Xczx Bi61RqdX5DANQLP1zQEaKw5oknQHZEh3sA2aqP1+cP1r6+1xiu0Ky1bOARFv 2nfq2bu85orBJVq69Eez7F/70yjj+A52nW17c4DGigOaJN0BGdIdNgya7RxD 92aDw8aKE8BC0GQvXRYWOC+yQIOTAba9OUBjxQFNku6ADOkOGwHN7V+7F5ex rTZ8VrA3cnuPu836Oj3/cjJ45gb3OthfusCJvwlOb97q5gCNFQc0SboDMqQ7 2AaNWVw8bHXPb5p2cJ3jrcbNK9avc7y86D9/NfvPYMUR7cXyfp78tHg5T6ho 5RKDy1rXbW78D7EsgIY+O9inJ90BTZLugAzpDkTQBFdrftDqnkXLAbNMeNI9 7C9078SdW4IzxG7buHPL+1Hv00b3z5PhM/fVu9hhmp+G7h9fpZt/sM5ql70p wLXHRv6QTQmgoc8O9ulJd0CTpDsgQ7pDIdAs3MosfqhiNnSvLp8JVwnZO6C8 2eh5eKs08zuHZyMrxzSi09uith9Vct4NTlH+w3nq7gT2tIk/ZFMCaOizg316 0h3QJOkOyJDugMcEaBVAQ58d7NOT7oAmSXdAhnQHgEarABr67GCfnnQHNEm6 AzKkOwA0WgXQ0GcH+/SkO6BJ0h2QId0BoNEqgIY+O9inJ90BTZLugAzpDgCN VgE09NnBPj3pDmiSdAdkSHcAaLQKoKHPDvbpSXdAk6Q7IEO6A0CjVQANfXaw T0+6A5ok3QEZ0h0AGq0CaOizg3160h3QJOkOyJDuYAU0vB3JioM+sacK0Ehw QJOkOyBDugNAo1VLn7cAQRAErS3uvi5O7PjGikaCQw3fxpGhgAKwotEq9lQB GgkOaJJ0B2RIdwBotIo9VYBGggOaJN0BGdIdABpIpgAaKw5oknQHZEh3AGgg mQJorDigSdIdkCHdAaCBZAqgseKAJkl3QIZ0B4AGkimAxooDmiTdARnSHQAa SKYAGisOaJJ0B2RIdwBoIJkCaKw4oEnSHZAh3QGggWQKoLHigCZJd0CGdAeA BpIpgMaKA5ok3QEZ0h0AGkimABorDmiSdAdkSHcAaCCZAmisOKBJ0h2QId0B oNkBebPR867zZOTxlvF+5H51PJgUrAKgseKAJkl3QIZ0B4BGi6bD3hfHo/ep 1y8n/c+brcOz0fT6FcOdfq/TDO553egU7/xZejfo3q7Vnf407pHvPxu6nbut w5dF3hKgseKAJkl3QIZ0B4BGhbzZ4LCx2PCvX28cDmY3r3sXbrvedPoXXkAE t9P4pDt4V/5NzehJvu8Kf++i79xt9X6crXIHaKw4oEnSHZAh3QGgUSBvcuY0 6rVmb3Hn2Oy8u9jnX7vt/Xqnf728ubxw79eTJCoqY/5p07xtAjRF/NNVZQmg seKAJkl3QIZ0B4Cm8jK9/eB246M0aN6Penfrbfci9qI36jVrtzr9t0teKaZ3 g+6vu2ffdpKgKeYfFJaBxaQAGisOaJJ0B2RIdwBoKq6w4Z+/7DXrsXVEqGm/ U683e8NYOw87fO1uL34oJ/i12vW24QKkdnvVcuNy0u92ej/Owm1joFnpf6WQ PslfSwmgseKAJkl3QIZ0B4CmyvJmg6/mDT/ZzL1p36kvNvO3/c6txWP33tBA 6np9UQg03oV7cBAulBZBs9L/WhkQXBRAY8UBTZLugAzpDgBNdTVv+OECocDi Jer5mSDIOJEg711fuwcd9+Iy+O8F0BT3z6RPqKfX+tWvfmVGpvn5FCLIZMhd QuWFDOm6c+eOifHRo0fchVBVqElq0uzHXqfbnwQNP+s4SP7iggQas+TpHLiv r36VCJqlb/r111/XQj148IDraxhxcwkO+DZOd0CGdAesaKqp8AKWhAqApviu rRx5F6fO4fnNmcmld50VAE2064zImqpPT7oDmiTdARnSHQCaCur6WPzV/83a S5YNmqIH63MUeuYpQElh/8KguXfvHoU1VZ+edAc0SboDMqQ7ADSV082x+CtF /X8BNJn0sXh6c6jFFU1h/wLLqAg05ufLly9Ls6bq05PugCZJd0CGdAeAploK rs1sPUxeX5m5eInOOkt3+Ndu+1ajO9/9Rbhg088ATVH/wmedmZ/mv0uzpurT k+6AJkl3QIZ0B4CmOrqcDL7pND5aYEd4yxfT7e9fnQk2V3AB/gfpZp64Rczw uFWPn8wcHfrZL3KLmEBp0Kzwv/6dYJmz4iTqOGj8sqyp+vSkO6BJ0h2QId0B oKmI4sdHrtcC0Q6omJKHQvIuwA9v5tzaD34/cbNN/+Ycg4InoWWBZql/pHCZ U+zOAHPQ+KVYU/XpSXdAk6Q7IEO6A0CjWcXuKpbS+9Hx46KX1ZTQOvc6i4PG X581VZ+edAc0SboDMqQ7ADSqFd29+fPocpuimv3ltP+3jWHGLJo+iR3EyVUm aPw1WVP16Ul3QJOkOyBDugNAo12Xk/M/tJqOm7ELK63pqH/q9keFDtCU0Gx0 1r3fXud5NGnQ+OuwpurTk+6AJkl3QIZ0B4BmF+RNXh5KeMLm8YPuWVGKLQGN X5g1VZ+edAc0SboDMqQ7ADSQTC0HjV+MNVWfnnQHNEm6AzKkOwA0kEytBI1f gDVVn550BzRJugMypDsANJBMFQGNv4o1VZ+edAc0SboDMqQ7ADSQTBUEjb+U NVWfnnQHNEm6AzKkOwA0kEwVB42fz5qqT0+6A5ok3QEZ0h0AGq1iT5W4+Vqg 8XNYU/XpSXdAk6Q7IEO6A0CjVeypbhk0fhZrqj496Q5oknQHZEh3AGi0ij3V 7YPGT7Fma9OT8pdCdkX5HDMF0NAdABqtYk+VBTR+kjUAzQ6K8jlmCqChOwA0 WsWeKhdo/BhrDg4OtjO5KH8pZFeUzzFTAA3dAaDRqqcVl+M4ZmSan+U2//LL L+essVtYprg/behG1j9cM4qse+6a7ty5Y2J89OgRdyFUcY9ucaJnQnQgbk5Z 0USiPAN63W9xlL8UsivK55gprGjoDljRaBV7quygMZqva8qxBqCpoiifY6YA GroDQKNV7KlKAI2pgbKuAWiqKMrnmCmAhu4A0GgVe6pCQOMT9qEBNFUU5XPM FEBDdwBotIo9VTmg8cuyBqCpoiifY6YAGroDQKNV7KmKAo1fijUADUneZHD6 YjTb9vP2KJ9jpgAaugNAo1XsqUoDjb8+a3YaNLPzbqNe7/STjwCfjvq9TqNe q9UbnW8Gk8tlDgFoHoe/3Oz0vnPdctBZ5x1DUT7HTAE0dAeARqvYUxUIGn9N 1nCA5v2od9Dpv7VnWE7vBt3bJqUkaC4v3Pv1xuf9oNtPR67TaBwOCrHDwOLU dUtAp8w7Uj7HTAE0dAeARqvYU5UJGn8d1uwqaLzZ4OGnjY/qSdB4F267fuum Nu+1277V6J7P1jMPofNdt2XcV0Gn3DtSPsdMATR0B4BGq9hTFQsavzBrdhQ0 s/Nu6/DM7SRBYwq7W6s7/ekcCulX1lSwb829hs7d3uh98p9LviPlc8wUQEN3 AGi0ij1VyaDxi7GGDBrz7d3tde623ddhZ/Rmw+NWvb70O3kR0Hiz0YugPzfn +5HMGuSwUb/vXqw+hLFC3kX/s896w3fTvpMAjTfsNeu1Zm900+O98HdulcRi nDKNTs99tnj8pew7Uj7HTAE0dAeARqvYUxUOGr8Aa2igCb9+Rwq6ZUSZWurA R3qrFaDxRr3mle+85YagqdWbvSHtHK/LC7dzEGDRWwTNtG9WOAuVh5Ws86Zx uNRb3e9ctz/KZW7Zd6R8jpkCaOgOAI1WsacqHzT+KtbY2HU2Hfba9drd3vDV sfPVecZJU2/7nVu1Zcrsq+FR8sQ/GTR84dD2uXkX7sGBe+H5fgo0Ed2y2v5y bmbB5XQwKUCm0u9ovUkCNHQHgEar2FOtBGj8payxc4wm+GZe/6j52Wmh/VpF j9Gkvtu/G/SeFDsHLM/xtXvQud75ZgM04ZJk1RH/y8ngmes+6baaC381QGPR gb0AgEar2FOtCmj8fNZYOhkgXLMkjjUsUeGTAZJ7lryLZw9PX8ffIbaHLWel tHjq8heHg3fzrS3sOvN+nvyUydY5XPZrtf1W94mbPkBT7h1DWW+SAA3dAaDR KvZUKwQaP4c1lkATXpNS9OysUqDxXp8+fHZBOTxztfrI33dHPRkgDpd6o/M4 Gy5x4WQAew7sBQA0WsWearVA42exxgpovNEfe70HzaINuTBobvqwN3v1vE8/ 3yzpvriiKXOycRoup/3RsuM5SeH0ZmsO7AUANFrFnmrlQOOnWGMBNN7f+qd/ mQVQ+CDa4eP9NPlpWZtcHzTTv5z2/2b7hmJp0ESXT97uznevrbx8cvqi66wL l2QR675jKOtNEqChOwA0WsWeahVB4ydZUx40AQU+6Q5eD90/vgoOgl8fppn+ 1XX/sual9HkKPeuftLu0nWbZygDNwg1hgrPpit6CprTKvKP1JgnQ0B0AGq1i T7WioPFjrDk4OCg4jxYtgu/e+7WrDulfX+ey3zp8WeTM3mIKQbOpVp8JGj+4 BPXsMLwaaL/Vfb6VOzOv/Y7WmyRAQ3cAaLSKPdXqgsZf/z7PlCLL6m2/e9gv cDfjXZP1JgnQ0B0AGq16WnE5jmNGpvnJVcCXX345X9es/OWtf7yXk0G/yD3z d1DWR4IZA9Y9d0137twxMT569Ii7EKq4R7c40TMhOhA3513RRJqzZuW6hvIu xeVNzpzGp73h/zg/fvIClMmR9W/jWNHQHbCi0Sr2VBWAxmxecB8a5V2KK7xc cWsHR6oq600SoKE7ADRaxZ6qDtD4xY7XUN4FsivrTRKgoTsANFrFnqoa0PgF WEN5F8iurDdJgIbuANBoFXuqmkDjr2IN5V0gu7LeJAEaugNAo1XsqSoDjb+U NZR3gezKepMEaOgOAI1WsaeqDzR+Pmso7wLZlfUmCdDQHQAarWJPVSVo/BzW UN4FsivrTRKgoTsANFrFnqpW0Pjr3DeAfYKjSdIdkCHdAaDRKvZUFYPGL8wa 9gmOJkl3QIZ0B4BGq9hT1Q0avxhr2Cc4miTdARnSHQAarWJPVT1o/AKsYZ/g aJJ0B2RIdwBotIo91V0Ajb+KNewTHE2S7oAM6Q4AjVaxp7ojoPGXsoZ9gqNJ 0h2QId0BoNEq9lR3BzR+PmvYJziaJN0BGdIdABqtYk91p0Dj57CGfYKjSdId kCHdAaDRKvZUdw00fhZr2Cc4miTdARnSHQAarWJPdQdB46dYwz7B0STpDsiQ 7gDQaBV7qrsJGj/JGvYJjiZJd0CGdAeARqvYU91Z0Pgx1hwcHPBOcDRJugMy pDsANFrFnuoug8Zf535oG53gaJJ0B2RIdwBotOppxeU4jhmZ5id3IeX15Zdf ztc1XDWYd+d6azVChnTduXPHxPjo0SPuQqji7uviRM+E6EDcvOormkhz1pRe 1zzFt3HuApAh3QErGq1iTxWgiRyI+9DQJNkLQIZ0B4BGq9hTBWjmDhTWoEmy F4AM6Q4AjVaxpwrQxB1KswZNkr0AZEh3AGi0ij1VgGbBoRxr0CTZC0CGdAeA RqvYUwVo0g4lWIMmyV4AMqQ7ADRaxZ4qQJPpsC5r0CTZC0CGdAeARqvYUwVo 8hzWYg2aJHsByJDuANBoFXuqAM0Sh+KsQZNkLwAZ0h0AGq1iTxWgWe5QkDVo kuwFIEO6A0CjVeypAjQrHYqwBk2SvQBkSHcAaLSKPVWApojDStagSbIXgAzp DgCNVrGnCtAUdFjOGjRJ9gKQId0BoNEq9lQBmuIOS1iDJsleADKkOwA0WsWe KkCzlkMea9Ak2QtAhnQHgEar2FMFaNZ1yGQNmiR7AciQ7gDQaBV7qgBNCYc0 a9Ak2QtAhnSHXQbNzz//bOY18W8XK4CGXgNLhgusQZNkLwAZ0h12GTRG33// /YcffmgSMD9/+9vffv3116azmTQMg4glsQugodfAlWGcNWiS7AUgQ7rDjoPG 6M2bNxFr0rp3797vfvc70+u2v/BxyXIch9eBuLnhvvkIzE/GGhgzNGMvGoS/ +tWv/p0g40DZ3Mj8CbwO7AUgQ7rDP/7jP5oYf//737PMJiub0x3mk3qltrbw KVgPBEEQpF4ff/yx4Y5ZFtkFDZG8dPjSHbCioTuYofWv//qvFIdauPuRIvYQ 2AtAhlYc2GNkD8HAoiBWTN+LVn8//PCD8LMIcIyGXgN7hnQHkyFvAXQH9gKQ oRUH9hh5Q/j+++8zmbJwgOaXX34hFrllsQ8tgEaCA/vspjuwF4AMrTiwx8gV gmGHWZ5Eu7+iIy8GOjpOOfMFDC2ARoID++ymO7AXgAyhSKVBY/3YihyJH9ve bNTvdZrB6rHROR5MvOQ/AzRQJPZPAaCBIiHGtISPbe/CbdebTv/CC4jjdhqf dAfv4r8A0ECR2D8FgAaKhBjTEj22vddue7/e6U+v/v/lhXu/3jgczG6WNQAN FIn9UwBooEiIMS3JY9sb9Zq1W53+2yWvADRQJPZPAaCBIiHGtASP7fej3t1a 7W5v9P7mtWm/U6/F1jgADXQl9k8BoIEiIca0BI/tt/3OrVrd6U9jx/+9Ya9Z rzV7o+vXABooEvunANBAkRBjWnLHdsSUTNDEXgRooEjsnwJAs4682eh513ky 8lb/Kqe8kXv4ZDC5XGsjTOe05I5tgAZaR+yfAkATyJsMTp90W/vR9ez1Vtcd TDzv9enxy+nNL11O+p83W4dno2liO9dseKvZG2bCJzwBNXapfGy3xsqLIApo Ghg0zBvUG51vYmQJT3Zttg/P1/DEdE5L8NjGrjN7mo3Oug+O40e7GPR+5H5V qgkUEvunsPOgmY7ODlv1/Vb32/41QbzJ+XHQ/+sxfHizwWEjee6oNzpudx6G eKrngCbsBjdKniO06iKIVYpOZ/28H/BlOnKdxfImZ07zoDecLrGIC6BJS/DY xskAuQrPvlvU1bfH9C8H06TdPRvN0kaz826jHs8zVN63u8IKv182wu+dnePY d8HZ0O3cbR2+3ARs2EfyToPGu+g7TTMEM775B3M2NouDIZcNgnBUZ4PG/NPt xVE6/7fVF0Gsqt1wKkauwPBWo3semy8ZcFwigCYtyWMbpzcvVfQd73oKBz3c wGe/7b5OTIb8ee377wbd2wGhElN4xbe71YrmqXMWdJygqtuJORt0pLut3o8Z 1KOJfSTvMGiigRStKdJ623e+uN4vEXx7rLfdzN/LBU2IEjO2W90np6mvUkW6 xFKFX2gTe07Sr0T7Uj7I2623IHugMQu0F26v05wnNvuxZ9Z9605JARI9the/ WuCCzbhC0MT3VIfLveS+a9MBPkl+N5vLfEl7+Gnjo3oSNAW+3S1X+BnFJmlo eDtBumXsKy/2kbyroAm/7ZvFb+4geds//PZqTAZDNG/nWB5oIv+bhXuj445m SSgs3e8RjsD88lJ7481L075TX0RV+EaJX8uVLdDEdlyEf2BEmSCDJASrIOFj O7H3dXjcWmhZuwya9JxNgSYYqPX77kXWvi/T7VuHZ24nCZpi3+6WKJy2iSVS +pV15mxxsY/kHQXN1XIj2epzfjVs4Lm/uWTX2fy7fUSc2Jpo9ZHcFaBJ7Y3P qWRF8XFZ3XUW9T1TzKvh8YO1zkkQJfFjOzwNMuR4PXmaSqRdBU162IdLicSu s9SS52bri/5nn/WG70KT2Cxb/e0uepdF3N/8dsYMzWgF4a8VmrPFxT6SdxM0 V9+6C31tyFp9LFrlrneufmfy8jDoBtcDsti5qSvrzwJNEfpky/YxmnAGffSJ c/q6opTxqzm249pV0CQXGlcH3/cTx9lzd1MYWHQOAh55i6BZ/e1uOWjy9zlk 7NwoNGeLi30k7yRook+84EeZtfqIexXr5NF5zlejdNugWXwxU7ZBs8ZiSqwq OLYT2lHQRFMpccrZ8TB5fDBv2pp5enAQ7XlYBA1xfl0zJRM0yRczlk5UsY/k nQRN9OFuFTTJXa+FLoJYpqK7zjhBEx6lKn56g0RVcGwntJugSZ5XczkZfNNp 1JOsyVxchHvUDzrXR224QWP1mCb7SN5J0DCsaJKgKXQRxNK/oODJAHyg8UZu 73F38UBnxfS04nIcx0xw85O7EPvK/9DSB+jTZ/5kTpbLC/eLw5u9XiV2nS1X 4V1n+aDhTr28zDjkLmFLSnzka38PIR2jufZpz49Fbun05pzyikRE0+VF//mr 2X/esNX7efLT+pe2QTRZWdFUTFl7BlLHZLN6fnRaWrbCGVT4211uacVOBtjE igZiUnQ9V+ZhO282enbc/9v8LMjlY6koaIITJh/eXONQ4CKI5Vo8Az/7lP4t HygxsPu00f3zZPjMffUu9u4/Dd0/vqraRTQKtIugyTqSnv5iWWDaplY0Wzq9 eSPHaCA2XV3f0ez0+vMrXIJ7l/UOu+4w0a6DS6hyL3vMHrFB22+0us8j5+Ce Nt2v+sm7VSy9COLqMpz0QcyYEhcpD3vtLE6FE2F7V0pGZ93EroGNbuLR+sN5 iTt1QGTtHmiyvllFNwBZ+Fa5ek91GjQFv90t0eL3yYwLNv2NnHUGcSp5L80Q Om4/dTFC7iVUi2vt+PAOb08xv8vSdy9GGa1+yUUQ8+s9l6/Koxu11cL7DzzP eItwImDE7qx2DjThF5vYVL2cDNxwiu2n7usS3hhk2aohAzSrvt1FNxtJv1fc NX4LGvNdN4NT4XfX3ItxIM3azH0hVsobfXtY/qyt9e51BunTLoFm4Qa2c2Xf A8pffV1kJmj8pd/urm6PtmJnWnCz6NDAfAXNuJlnyDLsN9tRRU378/5WdwG9 e3X6p8wbrBUSExwhOdol0JTQknudUfR+dPy4/HF8TNtd1+Xk/A+tpuNm7Fuz rvDeNW7mDreCmz/vtu9X994vkBUBNCsUdPXbObfVLe35l9ObU4nW1YbYB1VM wc1kKvCEzeGx8zB95yto1wTQrFR4e6i7nYXzf0pqOuqfuv2sR9sUUbBL7X57 M8+jgSAI2pAAmkLyJueHAp6wefwg+/lrEARBggXQQBAEQRsVQANBEARtVAAN BEHQSv3/yurN2w== "], {{0, 622}, {547, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], BaseStyle->"ImageGraphics", ImageSizeRaw->{547, 622}, PlotRange->{{0, 547}, {0, 622}}]], "Text", CellChangeTimes->{3.6336743069208527`*^9}], Cell[CellGroupData[{ Cell["\<\ Arvutades avaldise - 2x - 4y + 3280 v\[ADoubleDot]\[ADoubleDot]rtuse selle \ piirkonna tippudes, saame c(0; 40) = 3120, c(40; 0) = 3200, c(0; 240) = 2320, c(150; 0) = 2980, c(150; 100) = 2580, c(10; 240) = 2300. \ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633669252124558*^9, 3.6336692604861727`*^9}, { 3.633669374799574*^9, 3.6336694140180426`*^9}, 3.633673044795663*^9, 3.6336731164307604`*^9, {3.633673154701949*^9, 3.633673253028573*^9}, { 3.6336733208134503`*^9, 3.633673507133107*^9}, {3.6336735753020062`*^9, 3.6336736463270683`*^9}, 3.6336737002991557`*^9}], Cell[CellGroupData[{ Cell["\<\ Saadud v\[ADoubleDot]\[ADoubleDot]rtustest on v\[ADoubleDot]him 2300, see \ saadakse, kui x = 10 ja y = 240. Asendades x ja y v\[ADoubleDot]\[ADoubleDot]rtused viimasesse tabelisse, \ saame optimaalse vedude korralduse plaani: \ \>", "Text", CellChangeTimes->{{3.632937212564913*^9, 3.632937212564913*^9}, { 3.6329374181888742`*^9, 3.632937419764477*^9}, {3.6329375214766555`*^9, 3.6329375503055067`*^9}, {3.63293760941401*^9, 3.632937617900425*^9}, { 3.632937656557293*^9, 3.6329376802693343`*^9}, {3.633350109496792*^9, 3.633350253828245*^9}, {3.6333502897863083`*^9, 3.633350306977539*^9}, { 3.633351948662022*^9, 3.633351953591631*^9}, {3.6333641685072627`*^9, 3.633364255040615*^9}, {3.6333643935158644`*^9, 3.633364746903285*^9}, { 3.6333648079929924`*^9, 3.6333648169162083`*^9}, {3.6333648951035457`*^9, 3.6333651024747095`*^9}, {3.633365133378364*^9, 3.6333651392907743`*^9}, 3.633365190755666*^9, {3.633669252124558*^9, 3.6336692604861727`*^9}, { 3.633669374799574*^9, 3.6336694140180426`*^9}, 3.633673044795663*^9, 3.6336731164307604`*^9, {3.633673154701949*^9, 3.633673253028573*^9}, { 3.6336733208134503`*^9, 3.633673507133107*^9}, {3.6336735753020062`*^9, 3.6336736463270683`*^9}, {3.6336737002991557`*^9, 3.6336737077085795`*^9}}], Cell[BoxData[ GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztnb+L3Eibx5u7C+5f6PCYdDJnG+ku6GQuWN7DyQaCt+HOgYMX3jv66MDg 4GCDhoYXDC8YBINhwWAEhmXBDAjDi2EZTmxiXhodb2DM0IkD03RghkHopJJU KklVUlW11GpVfz+wi6cllX7Uo6e+qnrqqX+a/+F3//F3k8nkP/8x/t/vfv/f //zHP/5++W//EP/xL8v/+vf538f/eBb/93/xPsm/IwAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAFpMcoa+EDAkMAMQMWYASwAAHBk4HxDBDAAB agQAMBRwPiCCGQAC1AgAYCjgfEAEMwAEqBEAwFDA+YAIZgAIUCMAgKGA8wER zAAQoEYAAEMB5wMimAEgQI0AAIZihM5nF3ivV/blxcp/6PGQcL+5tqeTifXc 297rXeiIOC0zCLf+25cL69J2P8sdcL/1nluTc6ms/hinGjmvVxUAU9FzPg/+ 6mLShrVwXPetvw27utZ94L1ZJW6HICUtNA7Jj/RXlvpRY6XPNijcecuptfb3 EoZQqq8LaTXy2bUvFA8BHDpRIy3OofvX6bxeVQBM5SDns9+4i1lewKW9eu0F O7Lhfuu7K/sy3TC1X9x28M3yLXDm9uKppeDVNA6hnNcHV49qJPzkzmNLeLTw vrTtGjcr3zP1JS8t0DfSDZ2okYySc4idwPomcw6dc16vKgCmcqDzKb6D6i19 eOctc3ck+WncDvnQVpMWGoecHf2pkTBwUiOYLjy51ojWFzo6jk2XaoSp+snk sRN8O7xAw9l/dJIvuKm1vMk6lDMXOrUWbtCN/wTgdDnU+Wxdu6HfYX+7slIh MLVWt/vDLjWFujh5aaFxyLnRmxr54i0e5WXLNkm5xIUaOTbdqpFo5y2yQbcn 7hZvXgvMCFf2uJhfrJXfifsE4HTpV40wQ7qdSYH8jArlaRxyZvSlRor2KFGk M2cj84EHNTIUHauRojWFGpEAfSPgvOlZjTxs3Sf5GTrySFAjPdCPGvkWOI/j r7obN5ckcgN2UCNDATUCABgKqBEQ9aRGwo0zu0j6Q4oBO5lYVqiRwYAaAQAM Rc9qhAkbmDkB+1lcnQfIDowy4zv1VokrLehlsIfRHTQOiehsU3phdBpp6Qju tXE2RWkajZ/oVKP4iSycn33OLIA0O8p35PBwH7xbpf23ld5a2dKk6LINyq8v CUadPnXv7rNOEoJMLGtNjcQPxFmkemZqr24Czgh6PUWJtoGRwtx8nnF8wjde /OA/uetftpyTslUQ19FL1+NdntrOAxhACvu8Dikn40A1In+D3b6qyjVFExnF lRVbahqkdmmv3jH1db/1f843xQW+4t9IZsZTiVMrPiIATp5DnU+jGgnv3Hn2 Yl3O3U+cPvpsqHTCCdMqNkmokeJcsRP4qZrkRO2Q2KW8Z5KUsBe2C27WdMPU vt5wxh2++qur2C0svTt2W7i9WVqPcgdFm5i4lLmz2eX7+G/jVrfwkJ/2/jr/ c8J2LMiUpkSXbVB2icnEXqo9lKZXlNQIOzNrwrGl2kMrK0BlA0uni84W17eZ QeyDm9QYbHfLOTyv6HB7m5kGL2BbbucBDSCFfcrahRQcoEbkbrCHV1WyWjmJ jHaBu2QqK72idGhyt3Hm0+qm2nxk4akvbedjXZD0ZAMADMWhzkesRsjLkk+o oXFZVehQTj1onG6SUSMk44ToNVQ6JBlfYD1H5cLu79ynjfOFvwXOD5X2KPUb VT1Gxy+yDgR2+klS/A8//s+TeexFH/aBm3wu5e5LrjQ1umyDCER+XK38r/kP 9O7aY1kLNfLmg7d8kguDPK1EUsbS26VlVL6C64M7igZGar/WgUOarZIayW6n tGeWWWVSU1ySOw9pAClsa6lXQgldNSJ7g92/qno1FZd/89H5w7wQBu6iGJr8 28Z5MqOdIUUalvKLkJ+lfOr8BguDV3xEAIyHQ50PR40kHywu/cQTda1ndKJG yFdJQ+4jjUMKh1O7MDpPpDL2lN197EB+4DRGnABOOn7B+qUiO4rApSiVJkuX bVACab5Lz4e5r7ZY1qIRq2pFeo+VSqG/H6pG0j4cznBSXOlzRo3w9a3g8pR2 HsgAUtgWVquAMppqRPUGu3tV9WvKXt+y31vMpsls4W5Kl8W9quzUlVsTnbpH GwBgKA51Przoi/wFXbntaeEPVyOkF7Q5DaPGIUI/EOUdvDHst39G0pyVXZ+w gWNdFnNI7sL5/kS1NEm6bIOi1N/WAlalY1kbolgFmwSmUtokZWBZ+RwZ8MVz 3rWpEaXePOE1D2IAKez7q3N8BS01on6Dnb2qujXF63uhjrEywBcxPR7MYflQ ZqXS+dbbqw0AMBSHOp9q30jROyrXW3igGpHRFVqHNF1YQ37R+JvlqtzUsrOK xDB+qXFGiXJpkhxqBiWIDdT6luVjWdXVSMMhOn0j5BIb+/TSfvVq143AYpV2 HsgAUtgydI6vXqyGGtG4wa5eVeWaapqsR++9rkbo8CJ7WHbqis/k3lq/NgDA UBzqfOojNcUwqyh4jOUQNXLzMYkNk5g0qnFIo4sr7rHS5u68xUWlFc6mb8j7 hsbGSLk0SQ41AxY6sbe+RS6WdUA1wlovOWjhNMxoYO6sNDrZMje5ZedBDCCF bc06KE5HjWjcYFevap22au1QjbScmjMjDHIDGMahzocXxcpMpWlNCK+vRqaW 9V32prbl1NI4pNnFFT2ilZCPZ1fVVpgXF9d84qbGSLk0Sbprg8LyNBARTePa Q6qRqLrcGzl0cS0cc8zmeCYTgd/+6r8RDRgp7DyIAaSwN91BcTpqROMGu3pV WeSqtRc1ks1nJ1PL/xpwbq1fGwBgKA51Pvw5NfmaqgmcEVuGQ/pGPnzKRoUa 5uzoHtLi4pgoCDo+y4lfjQrPIz2M29gYKZcmSXdtUOIqxX5SKpZ1YDWScL/1 XzFpHybJLMv1h7LBZPsw8VHtBcrsPIgBpJyAGtG4wa5e1RSVau1YjdBT0/WO ubfWrw0AMBT9qJGIiR9r7og4LG6kSEYhyGeifUiriyuiILJxnzBwrubuXbVE mmirYWwi3P3l/W9ScSPKpUnSVRtExmIaB8IkYllPQI2kMFnXqgaTZZAoj0WK ClTaeRgDSDkBNaJxg129qpFqTXWqRvJTly6Me2v92gAAQ3Go82nIfia1gC/9 WNadU1OcRdwJo3FIu4srBqRIV0Ds8Z7wmlcmdJPvAMnQ9rOfanNquI2RcmmS dNQGkctr+WRrj2XtVI2oG1iFIgkV/Rqlo1GV5oBboNLOLbffnwGkTBh0jq+g pEbCjfPkOgg1brCrV1W5prpTI9RKRadmb61fGwBgKA51Pk25WNkQAmG7L/FV 2zxfkkmKJeqE0ThEwsUViQ6mT92//rKY8YtiQjfrvf3pU/rTnBnCbl6lRbU0 Sbppg5KJvc09TgmtsaydqhE1A3vw//yM007lFZ0ZEE1wUWlkuRartHPLvUS9 GUDKhEGrgDIKaiTxFVfk6arfYFevqnJNdadGKgbWcmu92gAAQ3Go82lZp4YZ rxFM+BVMwWPzGZYjHjkeoJhWzP9Y0DhEysUVWQK+syxhUFx5mkYpDUu6IMpF 6ck0p5tQLU2SLtog0cTeOkVeVm6nWbdqRMnA4nIuOT02uTFkLQtNAFtRU9Ta 2ctQ2pm9l6MaQMqEQa+EEjTNV6saSW5qlvVXKN9gV6+qck11p0YUT92nDQAw FAc6HyY/g6AZYl8ca+kG9YQ9NPtxns+QvFDz+csbZ55f3aX943ObJMPkZxwq okE4DZzGIfWxZsH909zUTVNWmUlGdapnb0qppF6aJAeaAb0quTh/NmECp9Os 4QmINjX1J6gY2OeknHr3TmoM9PeiqzzP1p6uEvK9bVtpLSRCItzevnB/e1Da ueX22UfdrQGksAXplsFQpEZsXpyItLmMA1G8wa5eVf2a4ifvFaWBLa6EirQi 1fzUfnGbnPqeqArhqfuzAQCG4iDnU5oLye0zTCi/OLOF43olTcIkTKOvUxJF ds+0WfnalOwZKxnMCtd3Sb4V8k0ah0TsIjvNWVOyAd+2Vpj9Ei/7jcrUnmIp N966WqqlSXOQGbAzUJomw+aw9zip5RlrqC92Bb3ypsbRDQUDy8uJ7eF1bqXp +msl8+a0BURpl9cNzpY/U9p5KANIYcvSLyWl4hx4676xK9uKe65abrDDV1Wt plhrrCZMY5fJqyygyc43LB6L4NRfmQzz9RUDe7EBAIZCz/lUV2svUe+V5TQH lXjy0pLxWbcj+YK2Fk62vG5lFfictCOUn6D+X237EefnpkPii//KO5E40JGb BZ1Led3PWuZ8UYpFQS93S2lq0JOpH8pdvV3UZ87dmd7mN/4TSOpL8HDybvDm WAs5A0vLSeJGkrV0Xbqwe7Kqe3VVaHbJ1ETJeNna8XkLxUzSlN95SANIYc+q XUijcxDBe4Pab5DrEw55VQ+rKeLTBLdPKpHvc9KXRXDqTJ1OSR6+mozqwQYA GAr6Sgx9IWBIxm4GbWoESMG2kUNfCwDgvIDzAdH4zSBXI01xjKAVqBEAwFDA +YBo/GaQr70rM6MHCIEaAQAMBZwPiEZvBpKxxKAFqBEAwFDA+YBoZGaQJa/L 50JGeVRh84pIoB2oEQDAUMD5gGhkZlDLC5Gk+r8qz6MEOkCNAACGAs4HRKMz g31wU8xrzHPRgIOBGgH9MQEAAAAAUAFqBAAAAADDAjUCAAAAgGGBGgEAAADA sHSuRgBoBrYHIpgBIKAxAgAMBZwPiGAGgAA1AgAYCjgfEMEMAAFqBAAwFHA+ IIIZAALUCABgKOB8QAQzAASoEQDAUMD5gAhmAAhQIwCAhH3gvVnZU2vl7492 TjgfEMEMAAFqBAzH3l9ZE3UuVv7D0JduEuHWd4t1N6BG+iDcB+9dZ2FJ2m6p SmYLxwv2Jq/JZo4ZZJI+u52pvXrz1t+qVd39nfs0KcB2tw17mWgh565GTKzT 8fDZtS+SN/YmKLV/W9fmyo64sq4XVut7CtSIa+HKtqkshBrpkthm3zLNk4yS Drc3S2s6sZZusCN/fljbl/RPIzHCDML95rqoaIap/eJWelm98M6dp4WIvZyp FnLOasTUOh0PcTv4eOV/rf4sUiMJ5MMBaqR7vniLR1AjHRNunPnScd1Cj7Sp kcwpTZ+6d0z7tfMW8fGVHw3CADMoVAQXa+3LfOeGn9z5ZXaIwMsZbCFnq0YM rtPx8Nldvgrq72iTGiEefvkWaqRrHrbuE6iRvoiNdjZtVyNZYzS1VrflOvgW OI+Tr+y5e2di3+34zSAV87OF87OfdYPck273XFpw6rQO+dT6zrIa+kaMtpAz VSNG1+loCDfX6/ecfqhmNRK/+OvXHA0DDgJqpFfIoGSLGgn3/toSVEEYOLNk 06OF96XnSx2AsZsB6Ri54nTzhnfecjaR7BZLC/n13epCpEYMt5CzVCOG1+no aVEjoA+gRnpFRo3kg2XTpberqe0HP2ukZo55UnzkZhDuvGdXzoZfLWl/e8IT dyt2Z8kH8qPk65hWNEeNGG4hZ6lGDK/T0QM1MgBQI70ioUZos8X3PHkJk8dO 8K3Xaz0+IzeD+Ot2zWlKMmhEVoMaIWM0aWxJgxox3ULOUY2YXqejR1WNJPMW fioN0S5eul7Aa1N3gfc63jMvONwHnrNIu1Iv7dU7ZkbV/db/Od8UF/jKr0bF d1iU6EbYYejqjnQqWDKLMJkK9sld/1J1XwpPpqZGqFfMYFVKZWr2he1+5t9R G2fjfFrVSPx9vcy+ofnhi/SZG9hta7QZ5BUn9malgR6hGjHfQs5PjZhfp6NH SY3sPzpJaztbeiTSJ9zertNmuhwUVM4DQAreBe6SbVNJk5uGvu82Ti1A3nru pcKgw6IYSFj1o1zGxNrmXaYipnNnwwbXpBMJZ4vr2yyPwT64SS+nYs+STyZD 0DeSFVL7vbQJaqSVVjWSRayJd2ndYcQYbQZZ38h04fHnatIxmvRPoRox30JY Hzn0tRwH8+t09CioEd6bXsySo71btLOUSoibj84f5kXT7y6yQPZYgv5t4zyZ 0R6M/cbNuzVmydBwh0UVpFJk7n4q9dXtb1dpUewkLzI7o+bZvvqrq7L7knwy FNFITcMIDt0ENdJKqxopupsEu9CnLW7XRovJZpBNp+LFuCYwYzQpQjVivoWc nxoxv05Hj7wayfcs70j1ZKUBZbrFpvb6lk2RyGyazBbuptTucob2OiwqypQD JyMBvZFCvaRR1hzLjEueM+5L7clEUCM906pG6ACx6GEWfsm87H/mmkE2Y0I0 SZMzGUeoRsy3kPNTI+bX6eg5VI0IW0n6onMKpietVzovWUSHRQkFBitscvWS nZeTEueL57xrUyMN+gFqpFegRpow1wzIh4YogVXSV2lVe0ShRsy0BC7m1+no kVcj6dBDNbJC3Ery2+j0oIaJdbympLOiGHtrgAbLZjPQJ5yM+oc8GaiRfoEa acJQM0g7Ri6reiMjGaO5qPeZQI0YaAkizK/T0aM/wzdfmyxvwsegRrKhQ9l7 ZXNHJxqBrK0kcVjLk4Ea6ZdWNULjkUQPs3WIecSYaQZJ3NeFtbzhrZpHhAq3 z0ToPcy3kPNTI+bX6ejRUSPZfFuyaOav/psR9Y20hdzXKaJhC01yLVwpVO7J QI30y+FzaqhfqoZAG4CJZpAElk/t6w13eZpEqNSi1lP059SM3kLOT42YX6ej R02N3G/9VwtrGre2btYij2ukJv9FLdtedtfM63tprz+UFYnKk4Ea6ReFfCMC XUo/owzMPGCcGdRmypSp5vJpJnMj5lsIe9NDX8txML9OR4+CGsmyeZS/Qcal Rqj6bci2F+7+8v43zqPYJRnXCk3CjlArPhmokX6RyMXaEPwcMfHPzQnGx4lZ ZnC/9Z5bvJxCFC01Yr6FsDc99LUcC9PrdPTIqhG63lClHR+XGik664RrNYaf 3Gc/CXtOirRmtINF/ckIVQdV71AjhyChRmhEEHfFinxuuJELehpkBuKAEEka vIfpFnKOasT0Oh09smpEtADEuNQIM02GM9oSEf/2p3k+aPjg//kZp8sufxRZ sepPRtwHkt9NwyFQI61IreGbCz9OL5nZq3maYgYkT/JFZSIbs9V/uWqtvibv YbiFnKMaMb1OR4+sGhGtKEQSk45HjVSmyTBhHvmCNBfFp1Zc9iVnhDEXBtkZ 1Z+MWI1QsVQe2WSzzupHWJ2N85FRI9QS6qn7sw40Uz+RjDCDZimyC27W9gXv +7dCk/cw3ELOUo0YXqdjpxhU5XZeFRRjHPnKL+nyLt/btlW0kuH29oWbBl3Q kvm5TEVrKfIG7zosKspSMk4ElKyUnLeewSB9FPR35SfDHFITKvSaadZZopHm 85c3zjy/yEv7x+f2XHlG/Nk4n1yNtJh0bgnlrn7ujyYxfjO4j98lW/gK52+y zLy5ZjVitIWwz2roazkqBtfpqAm3H9bFmrPckQtm53ojbi3dYFcOEqPLxt15 y3xIpJoWjF3bLt8/g8Sk0etxPu67LSq/FaaroeTAKvkK8lu7tFevvSA9L/ns mpaeldqTyRbKoanuK9MSyQSBymUl+9wzeduEyw03cx7OJ13okFvvwp2n9ovb TEYSwyDVd6wLPjYjNwP2vW5Arr+9TY0YbCHswxr6Wo6MsXU6TppTkooiipm1 bpMG0QvSZjRXC/HX/E1Sm4LCSbe5IL6dnJGOGbWiWVRlwdzS6sClIRv6mEjc SLj137ov6UCJtXj5trqn5JOJ2AQ7tRuiMJN3issiT9VaOLVzy0NPp3n8qSO2 6sbMikn90lR1hz3hUTBuM5D0Em3dYhntaiTBSAthn9bQ1zIARtYpAGPhnJ0P oMAMQHT2agQAMCBwPiCCGQAC1AgAYCjgfEAEMwAEqBEAwFDA+YAIZgAIUCMA gKGA8wERzAAQoEYAAEMB5wMimAEgQI0AAIYCzgdEMANAgBoBAAwFnA+IYAaA ADUCABgKOB8QwQwAAWoEADAUcD4gghkAAtQIAGAo4HxABDMABKgRAMBQwPmA CGYACFAjAIChgPMBEcwAEKBGAABDAecDIpgBIECNAACGAs4HRDADQIAaAaYQ 7jfX9nQysZ5723vO9n3gvVnZU2vl78sb7rfec2siPnDEtD2ToYHzARHMABCg RsBA7P2VNeFzYbufeYd8du2L2s5P3O1DpcCLlf/AHBZufXeVtMmEuhqhxYrO O16Ez+REMM75hPvgvessLJ3HfX/nPk2s1Ha3TWdgrXm2cLxgHx5wwSeBcWag iIl1qoFRaiT7+M1uZ2qv3rz1t+21quhAYDndEW5vrxczxgZni+vbxiq73/qv Flb69C/t1Tvm4Yv6AWKxcWXbVPmgb+SEMMb5xF7hLeN8NMRfeOfO08PFaiTc 3ixj47eWbrAjf35Y25f0z/FijBloYGqdamCKGsm9bo2p/eJW4Ic1HAgsp3vC T+78UsWHhztvOZ1MrdXtvnXfgi/e4pFAjYDBMML5xCa5ceZLx3ULd6KqRti3 QKBGMuczfereMQ5t5y3iU1Z+HBuGmIE6BtepBmaokeKzgou19uvdF+oOBJbT D6m6SKHDLg18C5zHk+nS2yl1ST1s3SdQI6eGAc6nROxVZlN1NULGaL6zrIa+ kUyu1EU4eR3iDXP3brR9tKaZgSRG16kGRqiR9LN3tnB+9rNukHsympJ/azR/ R0s6EFhOf9AqmExnzqblKSY7Xyh2jERQI6fJ+J1PhTwGSUWNkI+pq9Wv71YX IjUS7v21JbDeMHDIYOejhffl4OsfBuPMQAbD61QDA9RI9i77X+sbvGUek9Dk HGQcCCynVzJFlzBzgkY5Qp72Yyf4pngKqJFTZOzOp4a6Gkk+cx4l6vrBF6uR fJyR2yVID2x7d04W48xABsPrVIPxq5Fw5z27En1Qp8MoCQ1DADIOBJbTM0VN NYu6r/7qSus5Q42cIiN3PnVU1QgZo0mHkhvUCH07+JZPJ4VpqPSTwDgzkMD0 OtVg/Gpk76/X4hACGrt4mBqB5fQOkRmE6cITxgQnFSGWK8KMIlGLGkkCml8u rEvODN9k00+lUb/FS9cL+IJGfufqGXeB9zo7cGqvXN5cMI1DWp7J8Izc+dRR UyOlfl2hGmECq/gBrnQe91i7Z40zg1bMr1MNxq9Gmsnr9KCRGljOMcgHvBpE HfmQ5HRPJXO03zRlFIlEaiRp4Z2FlR1Yyzey/+gkzf1s6ZGYoHB7u07PwotE ktw5lgeVM7JDilTGHHiI1DMZHuOcj4oaoWM06Z9CNVKMYwpKbd3h1DHODFox v041MF2NZH0jTZ/b7Q4ElnMcaEeWIOqYxK9ywlyLIFhVNVJJp1ZRIzzjKWZi ViST5M70HvMzvnnvzh/nWWuYieqF6NI4RPKZDI9xzkdejTBjNClCNdKawo7a drOjO12MM4NWzK9TDQxXI5lP5sW4FrQ6EFjOcaChwtz4nHRrw1hYc0aRhpEa KibLamTr2pxKpzuXy1HamY3anc6dzY63qdLPpnFI6zMZHuOcj6wa4cTeC9VI a67gwv+05HE9VYwzg1bMr1MNjFYjWevWNve21YHAco5F01TfpGFtFHuipj+l QY3QTTJqpIudi5aHY1GiTRqHtD2T4THO+cipkaTTzJq7n0oWDjVijhm0Yn6d amC0GiEfhu15yaBGTod8qY5JLWC4OX41oXnWTNNWfmuejrNUOyIEAkNp5+Op kVOfSWSc85FRI4mRX9Q/kaBGzDGDVsyvUw3MVSNpx8hl9QOEA9TIKcGf6ku+ 8bk5dQu6ViNV8vWMspo+aGeokRTjnE97SHzil7ifSEI1QofbRCZ36msjtmKc GbRifp1qYKwa2d+urAtreSOxal6rA4HlHJMiQKIYYhPFr5boT41kc2nJOoy/ +m/43R1KO0ONpBjnfNqcSeKXHvE/kfTn1FD/I5HK+CQxzgxaMb9ONTBUjSTJ K6b29UZqdd3D59Sco+X0B7PqUBqzSmZYt4+49aFGsiWDmXwewsEXpZ2hRlKM cz4tzoQqDikyWVJkGBDETdHPpbFmGDDODFoxv041MFGN1KbOtaCQbwSWcxSK Oa3kgbfGr6Z0rkZ2GyeRRWVZKxIYSjtDjWQY53z6UCNFjLRgQT0a+y2z6OQp YpwZSGB6nWpgnBq533rPLeu5t5VfUVci8AyWc1RKU31vbl/OWuZop3SrRug1 VOYUcwWG0s6iM7ZsghoZAzqr5mU0ZIaniWu4K1PkoVbjXbjTODOQwPQ61cAs NSKOEGtCwoHAco5MJXmX1MI03aoR0ZoCXIGhtLPojC2boEbGQD9qpOie5eTb MWDVTuPMQAbD61QDg9QISUp5UZliyWz1X674NSu1hi8s57gw2fhlo3G6VSOi tYfoejraO4vO2LIJamQM9KRG6AdRPU1xFtU26k8h48xADqPrVANT1EizFNkF N2v7gtetkSCfsAiWc0SS2Qdpl5Oo4io0pCSNhAlXCbzWnMl9mg38hfvg3cr+ 3ratQiOF29sX7m8PSjtHrNaqGx1tlMqbNA5pfSbDY4TzYcmdiazRMjSrERrd Xe775f44OowzA1kMrlMNjFAj97GXt9lFOXiIwyBlHQgs57jkMk8u2X64vVla mRHUp1M1b+X2LTBTe3KspRvsyoGI2Rp5Sjsz69dQ9VKctVgOj92kcUjbXZ8C 43c+LMyaQZNL2/mo1hvVpkZo+VP7xW2meN1FXL/E0jq4/OEwywyUMLZONWDd 59DXogcJW+XqjxKib0MlBwLLOSqkiW9YmIZS5HthoNKCu7XUjSAY6Uj7N1IN MMtXqSta/6m9vinqXXJnJlEeS9IAiTa9/l/lQ+JNzc/kVKBXNvSFHIigIiYq 6RDb1UhCadVpa+G89SVSKp06ppiBJkbWqQbsezP0tWhBZ7s0w+n30HQgsBzz kMvFCrpn3M4HdATMAEQGqBEADiZXIyca6mkwcD4gghkAAtQIAJka0Yg8BIcB 5wMimAEgQI2AsyebriIZLgs6BM4HRDADQIAaAWdGJRQ5yiOIZNK9go6B8wER zAAQoEbAmVHLDZIkNrnK5t6C4wLnAyKYASBAjYCzYx/crGh+mtnC+dlXWNUI dAmcD4hgBoAANQIAGAo4HxDBDAABagSo8v8YIvRc "], {{0, 125}, {730, 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], BaseStyle->"ImageGraphics", ImageSize->{556., Automatic}, ImageSizeRaw->{730, 125}, PlotRange->{{0, 730}, {0, 125}}]], "Text", CellChangeTimes->{3.633674373230645*^9}] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, ScreenStyleEnvironment->"SlideShow", CellGrouping->Manual, WindowSize->{1356, 697}, WindowMargins->{{-4, Automatic}, {Automatic, 0}}, Magnification:>0.75 Inherited, FrontEndVersion->"10.0 for Microsoft Windows (32-bit) (July 1, 2014)", StyleDefinitions->FrontEnd`FileName[{"Report"}, "StandardReport.nb", CharacterEncoding -> "WindowsBaltic"] ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 261, 4, 99, "Section"], Cell[CellGroupData[{ Cell[866, 30, 953, 19, 63, "Text"], Cell[CellGroupData[{ Cell[1844, 53, 446, 6, 36, "Text"], Cell[CellGroupData[{ Cell[2315, 63, 666, 11, 36, "Text"], Cell[CellGroupData[{ Cell[3006, 78, 615, 13, 36, "Text"], Cell[CellGroupData[{ Cell[3646, 95, 678, 11, 36, "Text"], Cell[CellGroupData[{ Cell[4349, 110, 686, 10, 36, "Text"], Cell[CellGroupData[{ Cell[5060, 124, 940, 14, 61, "Text"], Cell[CellGroupData[{ Cell[6025, 142, 766, 11, 36, "Text"], Cell[CellGroupData[{ Cell[6816, 157, 729, 11, 36, "Text"], Cell[CellGroupData[{ Cell[7570, 172, 653, 8, 36, "Text"], Cell[CellGroupData[{ Cell[8248, 184, 658, 8, 36, "Text"], Cell[CellGroupData[{ Cell[8931, 196, 700, 10, 36, "Text"], Cell[CellGroupData[{ Cell[9656, 210, 990, 15, 61, "Text"], Cell[CellGroupData[{ Cell[10671, 229, 1212, 21, 62, "Text"], Cell[CellGroupData[{ Cell[11908, 254, 1078, 16, 61, "Text"], Cell[CellGroupData[{ Cell[13011, 274, 1040, 19, 37, "Text"], Cell[14054, 295, 998, 18, 62, "Text"] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[15281, 334, 278, 4, 47, "Subsection"], Cell[CellGroupData[{ Cell[15584, 342, 1894, 33, 115, "Text"], Cell[CellGroupData[{ Cell[17503, 379, 926, 18, 37, "Text"], Cell[CellGroupData[{ Cell[18454, 401, 1981, 74, 126, "Text"], Cell[CellGroupData[{ Cell[20460, 479, 495, 8, 61, "Text"], Cell[CellGroupData[{ Cell[20980, 491, 318, 4, 36, "Text"], Cell[CellGroupData[{ Cell[21323, 499, 386, 5, 36, "Text"], Cell[CellGroupData[{ Cell[21734, 508, 387, 5, 36, "Text"], Cell[CellGroupData[{ Cell[22146, 517, 497, 8, 36, "Text"], Cell[CellGroupData[{ Cell[22668, 529, 447, 6, 36, "Text"], Cell[CellGroupData[{ Cell[23140, 539, 1085, 17, 37, "Text"], Cell[CellGroupData[{ Cell[24250, 560, 5436, 91, 108, "Text"], Cell[CellGroupData[{ Cell[29711, 655, 221, 6, 37, "Text"], Cell[CellGroupData[{ Cell[29957, 665, 153, 5, 37, "Text"], Cell[CellGroupData[{ Cell[30135, 674, 225, 4, 36, "Text"], Cell[CellGroupData[{ Cell[30385, 682, 4605, 84, 150, "Text"], Cell[34993, 768, 1239, 38, 62, "Text"] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[36449, 826, 425, 7, 47, "Subsection"], Cell[CellGroupData[{ Cell[36899, 837, 1780, 42, 113, "Text"], Cell[CellGroupData[{ Cell[38704, 883, 1379, 23, 62, "Text"], Cell[CellGroupData[{ Cell[40108, 910, 9332, 157, 258, "Text"], Cell[CellGroupData[{ Cell[49465, 1071, 1275, 18, 61, "Text"], Cell[CellGroupData[{ Cell[50765, 1093, 1245, 18, 61, "Text"], Cell[CellGroupData[{ Cell[52035, 1115, 1809, 38, 187, "Text"], Cell[53847, 1155, 16100, 274, 260, "Text"] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[70056, 1440, 483, 8, 47, "Subsection"], Cell[CellGroupData[{ Cell[70564, 1452, 1160, 18, 36, "Text"], Cell[CellGroupData[{ Cell[71749, 1474, 1437, 21, 86, "Text"], Cell[CellGroupData[{ Cell[73211, 1499, 1138, 16, 36, "Text"], Cell[CellGroupData[{ Cell[74374, 1519, 17138, 285, 145, "Text"], Cell[CellGroupData[{ Cell[91537, 1808, 1379, 19, 61, "Text"], Cell[CellGroupData[{ Cell[92941, 1831, 1428, 24, 63, "Text"], Cell[CellGroupData[{ Cell[94394, 1859, 1487, 22, 61, "Text"], Cell[CellGroupData[{ Cell[95906, 1885, 14887, 248, 194, "Text"], Cell[CellGroupData[{ Cell[110818, 2137, 1327, 21, 37, "Text"], Cell[CellGroupData[{ Cell[112170, 2162, 1480, 23, 62, "Text"], Cell[113653, 2187, 1801, 28, 113, "Text"] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[115611, 2230, 501, 7, 47, "Subsection"], Cell[CellGroupData[{ Cell[116137, 2241, 2003, 35, 139, "Text"], Cell[CellGroupData[{ Cell[118165, 2280, 981, 19, 37, "Text"], Cell[CellGroupData[{ Cell[119171, 2303, 1981, 74, 126, "Text"], Cell[CellGroupData[{ Cell[121177, 2381, 4589, 83, 150, "Text"], Cell[125769, 2466, 1239, 38, 62, "Text"] }, Closed]] }, Closed]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[127081, 2512, 2226, 33, 131, "Text"], Cell[CellGroupData[{ Cell[129332, 2549, 944, 12, 36, "Text"], Cell[CellGroupData[{ Cell[130301, 2565, 18061, 301, 169, "Text"], Cell[CellGroupData[{ Cell[148387, 2870, 350, 5, 39, "Text"], Cell[CellGroupData[{ Cell[148762, 2879, 3382, 60, 94, "Text"], Cell[CellGroupData[{ Cell[152169, 2943, 351, 5, 39, "Text"], Cell[CellGroupData[{ Cell[152545, 2952, 175, 3, 39, "Text"], Cell[CellGroupData[{ Cell[152745, 2959, 251, 4, 39, "Text"], Cell[CellGroupData[{ Cell[153021, 2967, 4253, 75, 122, "Text"], Cell[CellGroupData[{ Cell[157299, 3046, 304, 4, 39, "Text"], Cell[CellGroupData[{ Cell[157628, 3054, 458, 6, 95, "Text"], Cell[CellGroupData[{ Cell[158111, 3064, 611, 10, 123, "Text"], Cell[CellGroupData[{ Cell[158747, 3078, 600, 15, 75, "Text"], Cell[CellGroupData[{ Cell[159372, 3097, 459, 8, 61, "Text"], Cell[CellGroupData[{ Cell[159856, 3109, 526, 8, 86, "Text"], Cell[CellGroupData[{ Cell[160407, 3121, 334, 6, 61, "Text"], Cell[CellGroupData[{ Cell[160766, 3131, 492, 8, 61, "Text"], Cell[CellGroupData[{ Cell[161283, 3143, 3657, 64, 92, "Text"], Cell[CellGroupData[{ Cell[164965, 3211, 319, 5, 36, "Text"], Cell[CellGroupData[{ Cell[165309, 3220, 3976, 70, 88, "Text"], Cell[169288, 3292, 795, 12, 61, "Text"] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[170348, 3328, 1404, 21, 82, "Text"], Cell[CellGroupData[{ Cell[171777, 3353, 1022, 15, 36, "Text"], Cell[CellGroupData[{ Cell[172824, 3372, 10886, 183, 125, "Text"], Cell[CellGroupData[{ Cell[183735, 3559, 174, 4, 36, "Text"], Cell[CellGroupData[{ Cell[183934, 3567, 2509, 46, 80, "Text"], Cell[186446, 3615, 322, 6, 61, "Text"] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[186853, 3630, 1463, 22, 82, "Text"], Cell[CellGroupData[{ Cell[188341, 3656, 11578, 194, 121, "Text"], Cell[CellGroupData[{ Cell[199944, 3854, 988, 14, 36, "Text"], Cell[CellGroupData[{ Cell[200957, 3872, 996, 14, 36, "Text"], Cell[CellGroupData[{ Cell[201978, 3890, 1018, 15, 36, "Text"], Cell[CellGroupData[{ Cell[203021, 3909, 1108, 16, 61, "Text"], Cell[CellGroupData[{ Cell[204154, 3929, 1051, 15, 36, "Text"], Cell[CellGroupData[{ Cell[205230, 3948, 1023, 13, 36, "Text"], Cell[CellGroupData[{ Cell[206278, 3965, 13756, 230, 114, "Text"], Cell[CellGroupData[{ Cell[220059, 4199, 1139, 17, 61, "Text"], Cell[CellGroupData[{ Cell[221223, 4220, 1066, 16, 36, "Text"], Cell[CellGroupData[{ Cell[222314, 4240, 1169, 17, 61, "Text"], Cell[CellGroupData[{ Cell[223508, 4261, 1214, 18, 36, "Text"], Cell[CellGroupData[{ Cell[224747, 4283, 1150, 17, 36, "Text"], Cell[CellGroupData[{ Cell[225922, 4304, 30284, 501, 482, "Text"], Cell[CellGroupData[{ Cell[256231, 4809, 1267, 19, 86, "Text"], Cell[CellGroupData[{ Cell[257523, 4832, 1303, 19, 61, "Text"], Cell[258829, 4853, 11733, 197, 86, "Text"] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] }, Closed]] } ] *) (* End of internal cache information *)