(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 8.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 157, 7] NotebookDataLength[ 49250, 1073] NotebookOptionsPosition[ 47836, 1020] NotebookOutlinePosition[ 48483, 1045] CellTagsIndexPosition[ 48440, 1042] WindowTitle->Interactive Curve Fitting - Source WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Interactive Curve Fitting", "Section", CellFrame->{{0, 0}, {0, 0}}, ShowCellBracket->False, FontColor->RGBColor[0.597406, 0, 0.0527047]], Cell[BoxData[ GraphicsBox[RasterBox[CompressedData[" 1:eJztnVuSozgWQDNiPqa3MJ+zpVlCbaB3WlGVNV9dvYH6TQRUph/ZGIHQmwvG xoZzQu3Aku7VfUj4Nk53//fLn//78q+Xl5f/NP/88e+Xl8v154Xj5+fp89y0 4+X63L7VnQu02XqOt9FzjRK5qtRMoYZFpk11/Ji+WDye92+r7+fFfbnGkuu9 eIQ4LBVJ+YRo5DPnRdITDp0TLRg6m/62nY/n08f5+H461G37fWqum57z4Xy2 jby0prMZOh4/jodLOx2bt6fzRSEA3B/KMKGSBy/DSKVcyYOn8krHqajvqed6 G6iol4qkfAIVNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsizPA/lj72AEA AMCmWLu0AXh01j6jAAAAcdb+hNwUJ5e1zZnPDEeey/e1jx0AAABsirVLm03x XFVlhs1X1JNY+4wCAAB02B9PJ4BdsvYpBAAAgOeGihpADo9GAUDIr+Lnr7ef a9vw16/i73VtMPx6+2v1gGwMijeAE89FAQA2DRW1BxX14lBRA0wi+lx0baMA AAAAAAAAAAAAbkj0uegR4L4cDoe1TYA1YQMAbIaDy9rm3JU9+w4AjwB3np3D BgDYDHuuKu/su3k0ynNRACGLHMy93dm2ijCPpHvD7LliAQAAmA0VNRioqIGK GlYk9Vz0AAAAAAAAAAAAALBR9KPR8Kf0a9sFAAAAAAAAAAAAcCt4LgoAAAAA AAAAAAB7I/Vc9ONheH9/X9uEzUJsZ0PoAGBZ3gNuLQgggR21GUjl7SC2syF0 ALAsVNQgxMv14XAI/xOja9sIAAAAT0lYWM5jbT/msGffAQAAAGAp9lxV3sF3 b1r0uehSZgAAAAAAAAAAAAA8Ar9b6rpuXpu3+tf0PBcFWJcFvxYBAAAAANgh VNQAADCK5LnobwAAAAAAAAAAAIANUbcPRav+wehH7LmoUqpsqKqmNTSXRVE0 by593mtRXlrfo7mImTlVN6ebUOhR07q3jmxVWXqquqxVOUjZq1eDVNe662ro Nxe1Xr5o2lt5cUc7VWr3BpGindNL6TkDl5nVIGWtbuaXWbwJo/OVKjSX68oL shMTO4ylHf+yy5GbhU5EubJJPeWgx5ayBfvOIR2qD5QJXWmFtJs2pLsLvu40 4oOesh/tJ3TKW/3DomZONgVdVPtNXvVXYWydyBRl/NWNWNW62L06G344TcNW L/SVpaTqcmeOWGWOm3W+TFPWsbL8dE1yklUal73ghDtBH+Hu1dE/HBM7/t7h sjNoN29Calrl2GadWfsMeoc0elcR584clrm5qzO5a+5mQe4imy2Tu1qcu+g2 7od7mkvVtqJtajgInQuqzUrRtWFCzIAkzQdK0/RR1U33JEhtgOhosnmLKtX0 DArVhaJHtZOlmgPbVN+mWZhRGzNvEc13MD61kIRcEPS2WciRp/C97a0ow569 DCOVRurZU0lFnUoBFbWkKiv7I0xFLc4dFXUAFfVUtVTUYRD2V1EnfTd7u920 v+va/NXoSXM86qXVwFtzgNvS7vJG3730Ga76Wkq/6lFz3dlWOa+69XpUOSix ixQtrrVV1pxBleO+uesMsv6QjenXF+bViFjGO5rtObaUp7bVoENe21Kqy1Un 1M8xOaxNftysOh61q5joKStQpbkIQ2p54HRWXcqsOsbVU7oZNBr8Fbv+yotk GBkvbuFbu9/LkY6DF3ZvTvqtOVXdBi0dlN6WZekEsHfQ2flmjpnQ+25vfn// 2yH1eswnokp/tNkpsJNrTqJruX4tzAkKBJXJVdUbbJmtrwtrUfuoGm2Ru5S3 AcrEGQyPld3jzbFTH+oP+is3d+XVuev2wI1zN9w8rZM1I3dFf203xxKvuUyT TevJkd8JSzF7iVHBzJa+D0vFZJLapawNh6xiQ91ixaf03R+lDHvaMqwPCKl8 +lRGgkZF3W3Q0oGKmoq685yKmoo6L5jZ0vdhqZhMUruUteEQFfUk37VU98C8 qRvq+uPjQz8UPZ/P+snoZYIqVAwtaFY0r+E0+8l8VIM3Gs70JkelUoLR0XBm 2X5dldcmWS5lQ2r1jDue+DBaRvrzvidVpc2WOKJicRvVZu+HaFqjgpngC/MS Fek2rRvSjKCy9rnxfepWFFKokVMzWaEsU9GDbEYnbfuoYOpGkdcwql/Sv+fc CVdJcY1a+Yo3WuUaZsfE+9S+j3mTRuFZoAxL9eTtFK6ecccTH0bnlmGkMtXz dKnMLCTpifZTUUfnyNOR4QGrstQuHTXGFqSiXiV3wlVSXKNWvuKNVrmG2TGh ooZb0+T0rUWf/br9e1HvuWjR/z1/+JOUIujKPxYu+l9YCEX0kGVARDxjjHxa ygZv6ejF6KiE0cfp0eUk6JMrmVamQx1qkPTIRzNSo4LC0OnbV7S/tD7WRw32 ElFYP1/y7EkZn09lPhHedej7vDiHSkbzq79YsWcWfUUUzYgXf7mdqa04eiK0 ebYxe86d9yE+T3n+OzuVqHbMx01Up/kkCud7Q0ZJ5uvCRQhNGvVCoueayK9O mKP8qDDd9szol7b5AM5LSup0P7LvxXBX8dWGvlCGTTJm1IBwianK3QySyo2k clR/KtShBkmPfDQjNSpIRS0xexJRy8NjS0UtMfVBcmegoh6FijrkEarKPVfU Gd89w+rwd/Tt34uq/kuT6C2xsG5WhXvLsu+KUb+8/kxsvQMryUIxdp8PLc/c FiblXaJEcgvKuODFf54N8yYXwYejZ2fUbO8i5b7kXwRSPfJtFu1JWZ7BtlZu eRg9XXJEbcuriorIU2xkjYjQi2hJFjXeFvFmhjeNUWu9HhO3/LQoe8tdSKqC ys+f+tE5aZVoBSU0T87U+sr2emq4Ur7k9eQrhydiaqiF3LqSX4QFfacMk684 yaT7l2GkUr7iJJOoqKMrUlGPritxZ9RyT9aIUFHn133e3IVQUQvVUlHPhor6 1r6r/k9G9X1A/47+dDrZ/9+lb9++vbr8+PHDe7X7w077rafHU+JNTo1GF/Wu U52hhtCjqGEZJVGdoZsp5ZmZoRe2kc3Fd0tnKGKvJQ9UKr8pRh15dY0MZTOO e/pTa43OSUmFpn5Pbzzv7agveTNCJRnZ70FCX4OU5ZWn9KfiELrpLZ3aIZn0 RYmGN+NRPsIpd7y19pa7qIhQZ15coicVmamMLjpb1SLmLUgmzlOtzau6RRAm bYxFTJoh9Vy+U4aNKonqDN1MKc/MDL2wjXydWIaRylElz5LKVExSS2Scigqm HHl1jQxlM457+lNrjc5JSYWmUlF7jqQ2RmqHZNIXJRrejEf5CKfc8dbaW+6i IkKdeXGJnlRkpjK66GxVi5i3IJk4T7U2r+oWQZi0MRYxaYbUZnyPLvH/lte2 FP/69esnAAAAAAAAAAAAwM74B4thROM= "], {{0, 0}, {1800, 25}}, {0, 255}, ColorFunction->RGBColor], ImageSize->{1800, 25}, PlotRange->{{0, 1800}, {0, 25}}]], "Section", CellFrame->{{0, 0}, {0, 0}}, ShowCellBracket->False], Cell[BoxData[ RowBox[{"Manipulate", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"DynamicModule", "[", RowBox[{ RowBox[{"{", RowBox[{"d0", "=", "0.07"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"plt1", "=", "\[IndentingNewLine]", RowBox[{"Which", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"plt", "===", "Plot"}], ",", "ListPlot", ",", "\[IndentingNewLine]", RowBox[{"plt", "===", "LogPlot"}], ",", "ListLogPlot", ",", "\[IndentingNewLine]", RowBox[{"plt", "===", "LogLogPlot"}], ",", "ListLogLogPlot", ",", "\[IndentingNewLine]", RowBox[{"plt", "===", "LogLinearPlot"}], ",", "ListLogLinearPlot"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"range", "=", "\[IndentingNewLine]", RowBox[{"Which", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"plt", "===", "Plot"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "d1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "d2"}], "}"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"plt", "===", "LogPlot"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "d1"}], "}"}], ",", RowBox[{"{", RowBox[{"d0", ",", "d2"}], "}"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"plt", "===", "LogLogPlot"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"d0", ",", "d1"}], "}"}], ",", RowBox[{"{", RowBox[{"d0", ",", "d2"}], "}"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"plt", "===", "LogLinearPlot"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"d0", ",", "d1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "d2"}], "}"}]}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"Panel", "[", "\[IndentingNewLine]", RowBox[{"Column", "[", "\[IndentingNewLine]", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Style", "[", RowBox[{ "\"\\"", ",", "Bold"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Grid", "[", RowBox[{"{", "\[IndentingNewLine]", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Column", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Row", "[", RowBox[{"{", RowBox[{"Button", "[", RowBox[{"\"\\"", ",", RowBox[{ RowBox[{"p", "=", RowBox[{"{", "}"}]}], ";", RowBox[{"l", "=", RowBox[{"{", RowBox[{"{", "}"}], "}"}]}], ";", RowBox[{"regline", "=", RowBox[{"{", "}"}]}], ";", RowBox[{"d1", "=", "1"}], ";", RowBox[{"d2", "=", "1"}]}], ",", RowBox[{"ImageSize", "\[Rule]", RowBox[{"{", "100", "}"}]}]}], "]"}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Row", "[", RowBox[{"{", RowBox[{"\"\\"", ",", RowBox[{"RadioButtonBar", "[", RowBox[{ RowBox[{"Dynamic", "[", "ratio1", "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"1", "/", "GoldenRatio"}], "\[Rule]", "\"\<1/golden ratio\>\""}], ",", RowBox[{"Automatic", "\[Rule]", "\"\\""}]}], "}"}]}], "]"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"EventHandler", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Dynamic", "@", RowBox[{"Show", "[", RowBox[{ RowBox[{"l", "[", RowBox[{"[", "1", "]"}], "]"}], ",", RowBox[{"Graphics", "[", RowBox[{ RowBox[{"{", RowBox[{"Point", "[", "p", "]"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "d1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "d2"}], "}"}]}], "}"}]}]}], "]"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "d1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "d2"}], "}"}]}], "}"}]}], ",", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"AspectRatio", "\[Rule]", "ratio1"}], ",", RowBox[{"ImageSize", "\[Rule]", RowBox[{"{", RowBox[{"275", ",", "275"}], "}"}]}], ",", RowBox[{"Background", "\[Rule]", "White"}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"Style", "[", RowBox[{"\"\\"", ",", "Italic"}], "]"}], ",", RowBox[{"Style", "[", RowBox[{"\"\\"", ",", "Italic"}], "]"}]}], "}"}]}], ",", RowBox[{"Axes", "\[Rule]", "None"}]}], "]"}]}], ",", "\[IndentingNewLine]", RowBox[{"\"\\"", "\[RuleDelayed]", RowBox[{"(", RowBox[{ RowBox[{"AppendTo", "[", RowBox[{"p", ",", RowBox[{"MousePosition", "[", "\"\\"", "]"}]}], "]"}], ";", "\[IndentingNewLine]", RowBox[{"If", "[", RowBox[{ RowBox[{ RowBox[{"Length", "[", "p", "]"}], "\[GreaterEqual]", "2"}], ",", RowBox[{"l", "=", RowBox[{"Dynamic", "@", RowBox[{"Plot", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"regline", "=", RowBox[{ RowBox[{"(", "model", ")"}], "/.", RowBox[{"FindFit", "[", RowBox[{"p", ",", "model", ",", RowBox[{"{", RowBox[{"a", ",", "b"}], "}"}], ",", RowBox[{"{", "x", "}"}]}], "]"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "d1"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "d1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "d2"}], "}"}]}], "}"}]}]}], "]"}]}]}]}], "\[IndentingNewLine]", "]"}]}], ")"}]}]}], "\[IndentingNewLine]", "]"}]}], "}"}], ",", RowBox[{"Spacings", "\[Rule]", "1"}]}], "]"}], ",", RowBox[{"Spacer", "[", "15", "]"}], ",", "\[IndentingNewLine]", RowBox[{"Column", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Row", "[", RowBox[{"{", RowBox[{"\"\\"", ",", RowBox[{"SetterBar", "[", RowBox[{ RowBox[{"Dynamic", "[", "plt", "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"Plot", "\[Rule]", "\"\\""}], ",", RowBox[{"LogPlot", "\[Rule]", "\"\\""}], ",", RowBox[{"LogLogPlot", "\[Rule]", "\"\\""}], ",", RowBox[{ "LogLinearPlot", "\[Rule]", "\"\\""}]}], "}"}]}], "]"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Row", "[", RowBox[{"{", RowBox[{"\"\\"", ",", RowBox[{"RadioButtonBar", "[", RowBox[{ RowBox[{"Dynamic", "[", "ratio2", "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"1", "/", "GoldenRatio"}], "\[Rule]", "\"\<1/golden ratio\>\""}], ",", RowBox[{"Automatic", "\[Rule]", "\"\\""}]}], "}"}]}], "]"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Dynamic", "@", RowBox[{"Show", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{"Which", "[", RowBox[{ RowBox[{ RowBox[{"Length", "[", "p", "]"}], "\[GreaterEqual]", "2"}], ",", "\[IndentingNewLine]", RowBox[{"plt", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"{", "\[IndentingNewLine]", RowBox[{"regline", "=", RowBox[{ RowBox[{"(", "model", ")"}], "/.", RowBox[{"FindFit", "[", RowBox[{"p", ",", "model", ",", RowBox[{"{", RowBox[{"a", ",", "b"}], "}"}], ",", RowBox[{"{", "x", "}"}]}], "]"}]}]}], "\[IndentingNewLine]", "}"}], "\[IndentingNewLine]", "]"}], ",", RowBox[{"{", RowBox[{"x", ",", "0.0001", ",", "d1"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"Evaluate", "[", "range", "]"}]}], ",", RowBox[{"GridLines", "\[Rule]", "Automatic"}]}], "]"}], ",", "\[IndentingNewLine]", "True", ",", "\[IndentingNewLine]", RowBox[{"plt", "[", RowBox[{ RowBox[{"x", " ", RowBox[{"d2", "/", "d1"}]}], ",", RowBox[{"{", RowBox[{"x", ",", "0.0001", ",", "d1"}], "}"}], ",", RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"Evaluate", "[", "range", "]"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Opacity", "[", "0", "]"}], "}"}]}]}], "]"}]}], "\[IndentingNewLine]", "]"}], ",", RowBox[{"Which", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Length", "[", "p", "]"}], ">", "0"}], ",", " ", "\[IndentingNewLine]", RowBox[{"plt1", "[", RowBox[{"p", ",", RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"Evaluate", "[", "range", "]"}]}]}], "]"}], ",", "\[IndentingNewLine]", "True", ",", "\[IndentingNewLine]", RowBox[{"plt1", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"d0", ",", "d0"}], "}"}], ",", RowBox[{"{", RowBox[{"d1", ",", "d2"}], "}"}]}], "}"}], ",", RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"Evaluate", "[", "range", "]"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Opacity", "[", "0", "]"}], "}"}]}]}], "]"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Frame", "\[Rule]", "True"}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"Style", "[", RowBox[{"\"\\"", ",", "Italic"}], "]"}], ",", RowBox[{"Style", "[", RowBox[{"\"\\"", ",", "Italic"}], "]"}]}], "}"}]}], ",", RowBox[{"ImageSize", "\[Rule]", RowBox[{"{", RowBox[{"275", ",", "275"}], "}"}]}], ",", RowBox[{"Background", "\[Rule]", "White"}], ",", RowBox[{"Axes", "\[Rule]", "None"}], ",", RowBox[{"AspectRatio", "\[Rule]", "ratio2"}]}], "]"}]}]}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"Spacings", "\[Rule]", "1"}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", "}"}], "}"}], "]"}], ",", "\[IndentingNewLine]", ",", RowBox[{"Row", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", RowBox[{"Text", "@", RowBox[{"TraditionalForm", "[", RowBox[{"Dynamic", "[", "regline", "]"}], "]"}]}]}], "}"}], ",", RowBox[{"Background", "\[Rule]", "White"}], ",", RowBox[{"FrameMargins", "\[Rule]", "5"}], ",", RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}]}], "\[IndentingNewLine]", "}"}], "]"}], "\[IndentingNewLine]", "]"}]}]}], "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"p", ",", RowBox[{"{", "}"}], ",", "\"\<\>\""}], "}"}], ",", RowBox[{"ControlType", "\[Rule]", "None"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"model", ",", RowBox[{ RowBox[{"a", " ", "x"}], "+", "b"}], ",", "\"\\""}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"a", " ", "x"}], "+", "b"}], ",", SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"a", " ", "x"}], "+", "b"}]], ",", RowBox[{"b", "*", SuperscriptBox["x", RowBox[{"a", " "}]]}], ",", RowBox[{ RowBox[{"a", " ", RowBox[{"Log", "[", "x", "]"}]}], "+", "b"}]}], "}"}], ",", "SetterBar"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"d1", ",", "1", ",", "\"\\""}], "}"}], ",", "1", ",", "100", ",", "1", ",", RowBox[{"Appearance", "\[Rule]", "\"\\""}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"d2", ",", "1", ",", "\"\\""}], "}"}], ",", "1", ",", "100", ",", "1", ",", RowBox[{"Appearance", "\[Rule]", "\"\\""}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"l", ",", RowBox[{"{", RowBox[{"{", "}"}], "}"}]}], "}"}], ",", RowBox[{"ControlType", "\[Rule]", "None"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"regline", ",", RowBox[{"{", "}"}]}], "}"}], ",", RowBox[{"ControlType", "\[Rule]", "None"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"plt", ",", "Plot"}], "}"}], ",", RowBox[{"ControlType", "\[Rule]", "None"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"plt1", ",", "ListPlot"}], "}"}], ",", RowBox[{"ControlType", "\[Rule]", "None"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"range", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "d1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "d2"}], "}"}]}], "}"}]}], "}"}], ",", RowBox[{"ControlType", "\[Rule]", "None"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"ratio1", ",", RowBox[{"1", "/", "GoldenRatio"}]}], "}"}], ",", RowBox[{"ControlType", "\[Rule]", "None"}]}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"ratio2", ",", RowBox[{"1", "/", "GoldenRatio"}]}], "}"}], ",", RowBox[{"ControlType", "\[Rule]", "None"}]}], "}"}], ",", RowBox[{"FrameMargins", "\[Rule]", RowBox[{"-", "7"}]}], ",", RowBox[{"AutorunSequencing", "\[Rule]", RowBox[{"{", RowBox[{"2", ",", "3", ",", "4"}], "}"}]}], ",", RowBox[{"ControlPlacement", "\[Rule]", "Top"}]}], "\[IndentingNewLine]", "]"}]], "Input", CellChangeTimes->{{3.404910033086368*^9, 3.40491004790768*^9}, { 3.4351686670625*^9, 3.435168741828125*^9}, {3.435168800984375*^9, 3.435168848296875*^9}, {3.435168935953125*^9, 3.435168938109375*^9}, { 3.435169013921875*^9, 3.435169020734375*^9}, {3.4351692035625*^9, 3.43516920415625*^9}, {3.43516923709375*^9, 3.43516924178125*^9}, { 3.435169275375*^9, 3.43516939428125*^9}, {3.43516942434375*^9, 3.435169469953125*^9}, {3.435169599234375*^9, 3.43516966484375*^9}, { 3.43516969696875*^9, 3.435169735140625*^9}, {3.435169767453125*^9, 3.435169782484375*^9}, {3.435169903796875*^9, 3.435169907046875*^9}, { 3.4351700695625*^9, 3.43517007225*^9}, {3.435170117859375*^9, 3.435170131328125*^9}, {3.43517033915625*^9, 3.435170360203125*^9}, { 3.4351704440625*^9, 3.43517061946875*^9}, {3.4351706505625*^9, 3.435170659984375*^9}, {3.43517071840625*^9, 3.435170763109375*^9}, { 3.43517080078125*^9, 3.435170801796875*^9}, {3.435170864515625*^9, 3.435170870421875*^9}, {3.435170900953125*^9, 3.435170959890625*^9}, { 3.435171000453125*^9, 3.435171018765625*^9}, {3.43517109771875*^9, 3.435171122984375*^9}, {3.43517118465625*^9, 3.435171226265625*^9}, { 3.43517134440625*^9, 3.435171579828125*^9}, {3.435171625296875*^9, 3.435171659375*^9}, {3.43517169225*^9, 3.435171697328125*^9}, { 3.435171728453125*^9, 3.435171732203125*^9}, {3.43517176459375*^9, 3.435171800109375*^9}, {3.435171942734375*^9, 3.43517194590625*^9}, { 3.435172085828125*^9, 3.43517208775*^9}, {3.435172125390625*^9, 3.435172128984375*^9}, {3.435172178828125*^9, 3.435172207203125*^9}, { 3.435172293265625*^9, 3.435172294578125*^9}, {3.435172327328125*^9, 3.435172348015625*^9}, {3.436968998046875*^9, 3.4369690061875*^9}, { 3.43696908196875*^9, 3.43696916615625*^9}, {3.43696927803125*^9, 3.436969336640625*^9}, {3.436969376859375*^9, 3.436969379296875*^9}, { 3.4369694096875*^9, 3.43696945828125*^9}, {3.4369695218125*^9, 3.436969545859375*^9}, {3.436969653421875*^9, 3.436969654078125*^9}, { 3.43696979478125*^9, 3.436969795703125*^9}, {3.436969834109375*^9, 3.436969839828125*^9}, {3.43696989290625*^9, 3.43696989890625*^9}, { 3.436969983609375*^9, 3.4369699840625*^9}, {3.436970137265625*^9, 3.436970158921875*^9}, {3.436970208046875*^9, 3.43697044359375*^9}, { 3.43697051603125*^9, 3.436970562703125*^9}, {3.43697064453125*^9, 3.436970698859375*^9}, {3.43697074790625*^9, 3.436970777265625*^9}, { 3.436970816984375*^9, 3.436970843765625*^9}, {3.43697134975*^9, 3.436971373703125*^9}, {3.436971440859375*^9, 3.436971498125*^9}, 3.43697154096875*^9, {3.436971584546875*^9, 3.43697168353125*^9}, { 3.4369717805*^9, 3.436971787875*^9}, {3.43697182128125*^9, 3.436971844203125*^9}, {3.436971913140625*^9, 3.4369719719375*^9}, { 3.436972024015625*^9, 3.436972070140625*^9}, {3.43697211875*^9, 3.43697211928125*^9}, 3.436972153328125*^9, {3.436972192390625*^9, 3.436972209359375*^9}, {3.436972257234375*^9, 3.4369722959375*^9}, { 3.43697236534375*^9, 3.436972366390625*^9}, 3.4369724029375*^9, { 3.436972443359375*^9, 3.43697248425*^9}, {3.436972853328125*^9, 3.436972873671875*^9}, {3.436972979171875*^9, 3.436973043453125*^9}, { 3.436973091203125*^9, 3.436973139234375*^9}, {3.4369731963125*^9, 3.436973251984375*^9}, {3.436973284140625*^9, 3.4369733110625*^9}, { 3.43697338759375*^9, 3.436973424375*^9}, {3.436973522078125*^9, 3.436973542609375*^9}, {3.436973581203125*^9, 3.4369735815*^9}, 3.436973673890625*^9, 3.436973717328125*^9, {3.436973765046875*^9, 3.43697376528125*^9}, {3.436973862953125*^9, 3.436973863296875*^9}, { 3.43697400625*^9, 3.43697400934375*^9}, {3.43697408615625*^9, 3.436974153296875*^9}, {3.436974223328125*^9, 3.436974251921875*^9}, { 3.436974291828125*^9, 3.436974339375*^9}, {3.436974373390625*^9, 3.4369744015*^9}, 3.436974500546875*^9, {3.436974539390625*^9, 3.436974544453125*^9}, {3.436974593515625*^9, 3.43697459496875*^9}, { 3.4369747569375*^9, 3.43697476025*^9}, {3.436974791*^9, 3.43697479165625*^9}, {3.43697496221875*^9, 3.4369749631875*^9}, { 3.43697500503125*^9, 3.4369750083125*^9}, {3.436975180421875*^9, 3.436975180828125*^9}, {3.436975216671875*^9, 3.436975227578125*^9}, { 3.4369753061875*^9, 3.43697530690625*^9}, {3.436975384703125*^9, 3.436975385015625*^9}, {3.436975489015625*^9, 3.4369754943125*^9}, { 3.43697583590625*^9, 3.436975849234375*^9}, {3.436975917921875*^9, 3.436975949390625*^9}, {3.436975993953125*^9, 3.436976007578125*^9}, { 3.4369762424375*^9, 3.436976264265625*^9}, {3.4369763089375*^9, 3.436976367984375*^9}, 3.436976443171875*^9, {3.436976530890625*^9, 3.4369765539375*^9}, {3.436976609953125*^9, 3.436976613625*^9}, { 3.4369766468125*^9, 3.436976652875*^9}, {3.43697672375*^9, 3.436976742828125*^9}, {3.4369769531875*^9, 3.43697696228125*^9}, { 3.436977083765625*^9, 3.4369770945*^9}, {3.437066652671875*^9, 3.437066710578125*^9}, {3.437066750875*^9, 3.43706683109375*^9}, { 3.437066916*^9, 3.43706692115625*^9}, {3.437066982296875*^9, 3.4370670035*^9}, {3.437067146546875*^9, 3.43706731596875*^9}, { 3.43706742809375*^9, 3.437067531046875*^9}, {3.43706756975*^9, 3.4370675724375*^9}, {3.437067644328125*^9, 3.4370676516875*^9}, { 3.437067723453125*^9, 3.437067768328125*^9}, {3.437067888359375*^9, 3.437067906734375*^9}, {3.4370681636875*^9, 3.43706825115625*^9}, { 3.437068581046875*^9, 3.437068660578125*^9}, {3.437068717390625*^9, 3.437068852765625*^9}, {3.437069040078125*^9, 3.437069052359375*^9}, { 3.437069176765625*^9, 3.4370691804375*^9}, 3.43706932415625*^9, { 3.437069385296875*^9, 3.437069406828125*^9}, {3.4370695775625*^9, 3.437069625328125*^9}, {3.437069688796875*^9, 3.437069736453125*^9}, { 3.437069779875*^9, 3.437069797609375*^9}, 3.437069837859375*^9, { 3.437070005484375*^9, 3.437070023921875*^9}, {3.437070058171875*^9, 3.437070068*^9}, {3.43707010825*^9, 3.437070179203125*^9}, { 3.437070346234375*^9, 3.43707035703125*^9}, {3.437070399609375*^9, 3.437070422953125*^9}, {3.4370705561875*^9, 3.437070556640625*^9}, { 3.437070651140625*^9, 3.437070656328125*^9}, {3.437070729203125*^9, 3.437070734890625*^9}, 3.437070776515625*^9, 3.437070843375*^9, { 3.437070906109375*^9, 3.437070964046875*^9}, {3.43707114921875*^9, 3.43707116240625*^9}, {3.437071480421875*^9, 3.4370717123125*^9}, { 3.43707180925*^9, 3.437071836703125*^9}, {3.437071909375*^9, 3.437071958921875*^9}, {3.437072020171875*^9, 3.4370720655625*^9}, { 3.4370721514375*^9, 3.43707215521875*^9}, {3.43707219721875*^9, 3.437072224734375*^9}, {3.4370723083125*^9, 3.43707237753125*^9}, 3.437072928140625*^9, {3.437073222828125*^9, 3.437073233609375*^9}, { 3.43707330534375*^9, 3.437073306828125*^9}, {3.437073349328125*^9, 3.437073349828125*^9}, {3.43707341575*^9, 3.43707343275*^9}, { 3.437073472453125*^9, 3.437073484515625*^9}, {3.437073531234375*^9, 3.437073562296875*^9}, {3.437073602796875*^9, 3.437073616625*^9}, { 3.437073679515625*^9, 3.437073682203125*^9}, {3.437073886328125*^9, 3.437073901984375*^9}, {3.437074004171875*^9, 3.4370740049375*^9}, { 3.43707417603125*^9, 3.43707421421875*^9}, {3.4370743181875*^9, 3.437074319484375*^9}, {3.43707449734375*^9, 3.43707451890625*^9}, { 3.43707490753125*^9, 3.437074907921875*^9}, 3.43707510725*^9, 3.4370751719375*^9, {3.437075243875*^9, 3.437075248203125*^9}, { 3.4370753131875*^9, 3.43707533359375*^9}, {3.43707649721875*^9, 3.437076540203125*^9}, {3.43707657284375*^9, 3.437076778828125*^9}, { 3.43707694625*^9, 3.437076969046875*^9}, {3.437077027390625*^9, 3.4370770455625*^9}, {3.43707711696875*^9, 3.437077118890625*^9}, { 3.43710553115625*^9, 3.437105531796875*^9}, {3.437105741203125*^9, 3.437105741796875*^9}, {3.43710586265625*^9, 3.437105872671875*^9}, 3.437105903265625*^9, {3.437106556390625*^9, 3.437106557875*^9}, { 3.437106652*^9, 3.43710665246875*^9}, {3.437106693234375*^9, 3.437106694234375*^9}, {3.437106843078125*^9, 3.437106849625*^9}, { 3.437106914328125*^9, 3.437106988875*^9}, {3.437107290078125*^9, 3.437107315984375*^9}, {3.437107933984375*^9, 3.43710793534375*^9}, { 3.437107993171875*^9, 3.437107999203125*^9}, {3.437108180453125*^9, 3.437108206875*^9}, {3.437108347265625*^9, 3.43710835065625*^9}, { 3.4372279683391914`*^9, 3.4372280762009764`*^9}, {3.4372281093962955`*^9, 3.437228130450401*^9}, {3.4372281796423197`*^9, 3.4372282225346084`*^9}, { 3.437250078905027*^9, 3.437250087090845*^9}, {3.4372511720355635`*^9, 3.437251257380406*^9}, {3.4372513008653374`*^9, 3.437251309271695*^9}, { 3.437251359428587*^9, 3.4372514086792173`*^9}, {3.437315580346446*^9, 3.43731558679891*^9}, {3.437387271*^9, 3.4373872788125*^9}, { 3.43738733446875*^9, 3.437387339796875*^9}, {3.4373873881875*^9, 3.43738738990625*^9}, {3.437387604375*^9, 3.4373876603125*^9}, { 3.437387824859375*^9, 3.437387896046875*^9}, {3.4373879505*^9, 3.437388001359375*^9}, {3.437388034171875*^9, 3.437388048140625*^9}, { 3.4373881695625*^9, 3.437388189984375*^9}, {3.437388249328125*^9, 3.437388267671875*^9}, {3.43738840484375*^9, 3.437388411453125*^9}, { 3.437388540234375*^9, 3.43738854821875*^9}, {3.43738929253125*^9, 3.437389434890625*^9}, {3.43738949171875*^9, 3.43738949240625*^9}, { 3.437389585421875*^9, 3.43738959625*^9}, {3.437389689359375*^9, 3.437389692921875*^9}, {3.437389726296875*^9, 3.437389726578125*^9}, { 3.437389785046875*^9, 3.437389870609375*^9}, {3.4373899286875*^9, 3.437389933875*^9}, {3.43738996703125*^9, 3.43738997453125*^9}, { 3.437390128*^9, 3.437390132515625*^9}, {3.43739016546875*^9, 3.437390179703125*^9}, {3.437390408078125*^9, 3.437390443640625*^9}, 3.43739051421875*^9, {3.43739071746875*^9, 3.43739075103125*^9}, { 3.4373966124375*^9, 3.4373966256875*^9}, {3.43739669296875*^9, 3.43739671646875*^9}, {3.437396769625*^9, 3.437396794171875*^9}, { 3.437396826828125*^9, 3.43739684725*^9}, {3.437396886109375*^9, 3.437396887859375*^9}, {3.43741179525*^9, 3.437411849734375*^9}, { 3.437749814009255*^9, 3.4377498240182557`*^9}}, CellID->176273040] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`d1$$ = 1, $CellContext`d2$$ = 1, $CellContext`l$$ = {{}}, $CellContext`model$$ = $CellContext`b + \ $CellContext`a $CellContext`x, $CellContext`p$$ = {}, $CellContext`plt$$ = Plot, $CellContext`plt1$$ = ListPlot, $CellContext`range$$ = {{0, $CellContext`d1$$}, { 0, $CellContext`d2$$}}, $CellContext`ratio1$$ = GoldenRatio^(-1), $CellContext`ratio2$$ = GoldenRatio^(-1), $CellContext`regline$$ = {}, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{ Hold[$CellContext`p$$], {}, ""}}, {{ Hold[$CellContext`model$$], $CellContext`b + $CellContext`a \ $CellContext`x, "model"}, {$CellContext`b + $CellContext`a $CellContext`x, E^($CellContext`b + $CellContext`a $CellContext`x), $CellContext`b \ $CellContext`x^$CellContext`a, $CellContext`b + $CellContext`a Log[$CellContext`x]}}, {{ Hold[$CellContext`d1$$], 1, "data x-range"}, 1, 100, 1}, {{ Hold[$CellContext`d2$$], 1, "y-range"}, 1, 100, 1}, {{ Hold[$CellContext`l$$], {{}}}}, {{ Hold[$CellContext`regline$$], {}}}, {{ Hold[$CellContext`plt$$], Plot}}, {{ Hold[$CellContext`plt1$$], ListPlot}}, {{ Hold[$CellContext`range$$], {{0, $CellContext`d1$$}, { 0, $CellContext`d2$$}}}}, {{ Hold[$CellContext`ratio1$$], GoldenRatio^(-1)}}, {{ Hold[$CellContext`ratio2$$], GoldenRatio^(-1)}}}, Typeset`size$$ = { 604., {210.5, 217.5}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True, $CellContext`model$32162$$ = 0, $CellContext`d1$32163$$ = 0, $CellContext`d2$32164$$ = 0}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`d1$$ = 1, $CellContext`d2$$ = 1, $CellContext`l$$ = {{}}, $CellContext`model$$ = $CellContext`b + \ $CellContext`a $CellContext`x, $CellContext`p$$ = {}, $CellContext`plt$$ = Plot, $CellContext`plt1$$ = ListPlot, $CellContext`range$$ = {{0, $CellContext`d1$$}, { 0, $CellContext`d2$$}}, $CellContext`ratio1$$ = GoldenRatio^(-1), $CellContext`ratio2$$ = GoldenRatio^(-1), $CellContext`regline$$ = {}}, "ControllerVariables" :> { Hold[$CellContext`model$$, $CellContext`model$32162$$, 0], Hold[$CellContext`d1$$, $CellContext`d1$32163$$, 0], Hold[$CellContext`d2$$, $CellContext`d2$32164$$, 0]}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> DynamicModule[{$CellContext`d0 = 0.07}, $CellContext`plt1$$ = Which[$CellContext`plt$$ === Plot, ListPlot, $CellContext`plt$$ === LogPlot, ListLogPlot, $CellContext`plt$$ === LogLogPlot, ListLogLogPlot, $CellContext`plt$$ === LogLinearPlot, ListLogLinearPlot]; $CellContext`range$$ = Which[$CellContext`plt$$ === Plot, {{0, $CellContext`d1$$}, { 0, $CellContext`d2$$}}, $CellContext`plt$$ === LogPlot, {{ 0, $CellContext`d1$$}, {$CellContext`d0, $CellContext`d2$$}}, \ $CellContext`plt$$ === LogLogPlot, {{$CellContext`d0, $CellContext`d1$$}, \ {$CellContext`d0, $CellContext`d2$$}}, $CellContext`plt$$ === LogLinearPlot, {{$CellContext`d0, $CellContext`d1$$}, { 0, $CellContext`d2$$}}]; Panel[ Column[{ Style["Click the graph on the left to place points.", Bold], Grid[{{ Column[{ Row[{ Button[ "reset", $CellContext`p$$ = {}; $CellContext`l$$ = {{}}; \ $CellContext`regline$$ = {}; $CellContext`d1$$ = 1; $CellContext`d2$$ = 1, ImageSize -> {100}]}], Row[{"aspect ratio: ", RadioButtonBar[ Dynamic[$CellContext`ratio1$$], { 1/GoldenRatio -> "1/golden ratio", Automatic -> "automatic"}]}], EventHandler[ Dynamic[ Show[ Part[$CellContext`l$$, 1], Graphics[{ Point[$CellContext`p$$]}, PlotRange -> {{0, $CellContext`d1$$}, { 0, $CellContext`d2$$}}], PlotRange -> {{0, $CellContext`d1$$}, { 0, $CellContext`d2$$}}, Frame -> True, AspectRatio -> $CellContext`ratio1$$, ImageSize -> {275, 275}, Background -> White, FrameLabel -> { Style["x", Italic], Style["y", Italic]}, Axes -> None]], "MouseDown" :> (AppendTo[$CellContext`p$$, MousePosition["Graphics"]]; If[Length[$CellContext`p$$] >= 2, $CellContext`l$$ = Dynamic[ Plot[ Evaluate[$CellContext`regline$$ = ReplaceAll[$CellContext`model$$, FindFit[$CellContext`p$$, $CellContext`model$$, \ {$CellContext`a, $CellContext`b}, {$CellContext`x}]]], {$CellContext`x, 0, $CellContext`d1$$}, PlotRange -> {{0, $CellContext`d1$$}, { 0, $CellContext`d2$$}}]]])]}, Spacings -> 1], Spacer[15], Column[{ Row[{"plotting: ", SetterBar[ Dynamic[$CellContext`plt$$], { Plot -> "plot", LogPlot -> "log plot", LogLogPlot -> "log-log plot", LogLinearPlot -> "log-linear plot"}]}], Row[{"aspect ratio: ", RadioButtonBar[ Dynamic[$CellContext`ratio2$$], { 1/GoldenRatio -> "1/golden ratio", Automatic -> "automatic"}]}], Dynamic[ Show[ Which[Length[$CellContext`p$$] >= 2, $CellContext`plt$$[ Evaluate[{$CellContext`regline$$ = ReplaceAll[$CellContext`model$$, FindFit[$CellContext`p$$, $CellContext`model$$, \ {$CellContext`a, $CellContext`b}, {$CellContext`x}]]}], {$CellContext`x, 0.0001, $CellContext`d1$$}, PlotRange -> Evaluate[$CellContext`range$$], GridLines -> Automatic], True, $CellContext`plt$$[$CellContext`x \ ($CellContext`d2$$/$CellContext`d1$$), {$CellContext`x, 0.0001, $CellContext`d1$$}, GridLines -> Automatic, PlotRange -> Evaluate[$CellContext`range$$], PlotStyle -> { Opacity[0]}]], Which[Length[$CellContext`p$$] > 0, $CellContext`plt1$$[$CellContext`p$$, GridLines -> Automatic, PlotRange -> Evaluate[$CellContext`range$$]], True, $CellContext`plt1$$[{{$CellContext`d0, $CellContext`d0}, \ {$CellContext`d1$$, $CellContext`d2$$}}, GridLines -> Automatic, PlotRange -> Evaluate[$CellContext`range$$], PlotStyle -> { Opacity[0]}]], Frame -> True, FrameLabel -> { Style["x", Italic], Style["y", Italic]}, ImageSize -> {275, 275}, Background -> White, Axes -> None, AspectRatio -> $CellContext`ratio2$$]]}, Spacings -> 1]}}], Null, Row[{"fitting curve: ", Text[ TraditionalForm[ Dynamic[$CellContext`regline$$]]]}, Background -> White, FrameMargins -> 5, Frame -> True]}]]], "Specifications" :> {{{$CellContext`p$$, {}, ""}, ControlType -> None}, {{$CellContext`model$$, $CellContext`b + $CellContext`a \ $CellContext`x, "model"}, {$CellContext`b + $CellContext`a $CellContext`x, E^($CellContext`b + $CellContext`a $CellContext`x), $CellContext`b \ $CellContext`x^$CellContext`a, $CellContext`b + $CellContext`a Log[$CellContext`x]}, ControlType -> SetterBar}, {{$CellContext`d1$$, 1, "data x-range"}, 1, 100, 1, Appearance -> "Labeled"}, {{$CellContext`d2$$, 1, "y-range"}, 1, 100, 1, Appearance -> "Labeled"}, {{$CellContext`l$$, {{}}}, ControlType -> None}, {{$CellContext`regline$$, {}}, ControlType -> None}, {{$CellContext`plt$$, Plot}, ControlType -> None}, {{$CellContext`plt1$$, ListPlot}, ControlType -> None}, {{$CellContext`range$$, {{0, $CellContext`d1$$}, { 0, $CellContext`d2$$}}}, ControlType -> None}, {{$CellContext`ratio1$$, GoldenRatio^(-1)}, ControlType -> None}, {{$CellContext`ratio2$$, GoldenRatio^(-1)}, ControlType -> None}}, "Options" :> { FrameMargins -> -7, AutorunSequencing -> {2, 3, 4}, ControlPlacement -> Top}, "DefaultOptions" :> {ControllerLinking -> True}], ImageSizeCache->{615., {266., 271.}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellID->90306286], Cell[CellGroupData[{ Cell["CAPTION", "Section", CellFrame->{{0, 0}, {1, 0}}, CellFrameColor->RGBColor[0.87, 0.87, 0.87], FontFamily->"Helvetica", FontSize->12, FontWeight->"Bold", FontColor->RGBColor[0.597406, 0, 0.0527047]], Cell[TextData[{ "This Demonstration is a simple interactive tool to help to understand a few \ common fitting models of 1D datasets as well as their visualization using \ logarithmic plots. It is based on an example for the ", StyleBox["EventHandler", "MR"], " in the ", StyleBox["Mathematica", FontSlant->"Italic"], " documentation." }], "Text"] }, Close]] }, Open ]], Cell[CellGroupData[{ Cell["DETAILS", "Section", CellFrame->{{0, 0}, {1, 0}}, CellFrameColor->RGBColor[0.87, 0.87, 0.87], FontFamily->"Helvetica", FontSize->12, FontWeight->"Bold", FontColor->RGBColor[0.597406, 0, 0.0527047]], Cell["\<\ Click to get new points in the left graphic according to a chosen fitting \ model. \ \>", "Text"], Cell["\<\ Click to get \"wrong\" points far from the desired shape. What happens to the \ fitting curve?\ \>", "Text"], Cell["Choose \"wrong\" models for a given dataset.", "Text"], Cell["\<\ Use different plots to see how they transform different shapes. \ \>", "Text"] }, Close]], Cell[CellGroupData[{ Cell["THIS NOTEBOOK IS THE SOURCE CODE FROM", "Text", CellFrame->{{0, 0}, {0, 0}}, CellMargins->{{48, 10}, {4, 28}}, CellGroupingRules->{"SectionGrouping", 25}, CellFrameMargins->{{48, 48}, {6, 5}}, CellFrameColor->RGBColor[0.87, 0.87, 0.87], FontFamily->"Helvetica", FontSize->10, FontWeight->"Bold", FontColor->RGBColor[0.597406, 0, 0.0527047]], Cell[TextData[{ "\"", ButtonBox["Interactive Curve Fitting", BaseStyle->"Hyperlink", ButtonData->{ URL["http://demonstrations.wolfram.com/InteractiveCurveFitting/"], None}, ButtonNote->"http://demonstrations.wolfram.com/InteractiveCurveFitting/"], "\"", " from ", ButtonBox["the Wolfram Demonstrations Project", BaseStyle->"Hyperlink", ButtonData->{ URL["http://demonstrations.wolfram.com/"], None}, ButtonNote->"http://demonstrations.wolfram.com/"], "\[ParagraphSeparator]\[NonBreakingSpace]", ButtonBox["http://demonstrations.wolfram.com/InteractiveCurveFitting/", BaseStyle->"Hyperlink", ButtonData->{ URL["http://demonstrations.wolfram.com/InteractiveCurveFitting/"], None}, ButtonNote->"http://demonstrations.wolfram.com/InteractiveCurveFitting/"] }], "Text", CellMargins->{{48, Inherited}, {0, Inherited}}, FontFamily->"Verdana", FontSize->10, FontColor->GrayLevel[0.5]], Cell[TextData[{ "Contributed by: ", ButtonBox["Janos Karsai", BaseStyle->"Hyperlink", ButtonData->{ URL["http://demonstrations.wolfram.com/author.html?author=Janos+Karsai"], None}, ButtonNote-> "http://demonstrations.wolfram.com/author.html?author=Janos+Karsai"], " (University of Szeged, Hungary)" }], "Text", CellDingbat->"\[FilledSmallSquare]", CellMargins->{{66, 48}, {2, 4}}, FontFamily->"Verdana", FontSize->10, FontColor->GrayLevel[0.6]], Cell[CellGroupData[{ Cell[TextData[{ "A full-function Wolfram ", StyleBox["Mathematica", FontSlant->"Italic"], " system (Version 6 or higher) is required to edit this notebook.\n", StyleBox[ButtonBox["GET WOLFRAM MATHEMATICA \[RightGuillemet]", BaseStyle->"Hyperlink", ButtonData->{ URL["http://www.wolfram.com/products/mathematica/"], None}, ButtonNote->"http://www.wolfram.com/products/mathematica/"], FontFamily->"Helvetica", FontWeight->"Bold", FontSlant->"Italic", FontColor->RGBColor[1, 0.42, 0]] }], "Text", CellFrame->True, CellMargins->{{48, 68}, {8, 28}}, CellFrameMargins->12, CellFrameColor->RGBColor[0.87, 0.87, 0.87], CellChangeTimes->{3.3750111182355957`*^9}, ParagraphSpacing->{1., 1.}, FontFamily->"Verdana", FontSize->10, FontColor->GrayLevel[0.411765], Background->RGBColor[1, 1, 1]], Cell[TextData[{ "\[Copyright] ", StyleBox[ButtonBox["Wolfram Demonstrations Project & Contributors", BaseStyle->"Hyperlink", ButtonData->{ URL["http://demonstrations.wolfram.com/"], None}, ButtonNote->"http://demonstrations.wolfram.com/"], FontColor->GrayLevel[0.6]], "\[ThickSpace]\[ThickSpace]\[ThickSpace]|\[ThickSpace]\[ThickSpace]\ \[ThickSpace]", StyleBox[ButtonBox["Terms of Use", BaseStyle->"Hyperlink", ButtonData->{ URL["http://demonstrations.wolfram.com/termsofuse.html"], None}, ButtonNote->"http://demonstrations.wolfram.com/termsofuse.html"], FontColor->GrayLevel[0.6]], "\[ThickSpace]\[ThickSpace]\[ThickSpace]|\[ThickSpace]\[ThickSpace]\ \[ThickSpace]", StyleBox[ButtonBox["Make a new version of this Demonstration \ \[RightGuillemet]", BaseStyle->"Hyperlink", ButtonData->{ URL["http://demonstrations.wolfram.com/participate/upload.jsp?id=\ InteractiveCurveFitting"], None}, ButtonNote->None], FontColor->GrayLevel[0.6]] }], "Text", CellFrame->{{0, 0}, {0, 0.5}}, CellMargins->{{48, 10}, {20, 50}}, CellFrameMargins->{{6, 0}, {6, 6}}, CellFrameColor->GrayLevel[0.6], FontFamily->"Verdana", FontSize->9, FontColor->GrayLevel[0.6]] }, Open ]] }, Open ]] }, Editable->True, Saveable->False, ScreenStyleEnvironment->"Working", CellInsertionPointCell->None, WindowSize->{780, 650}, WindowMargins->{{Inherited, Inherited}, {Inherited, 0}}, WindowElements->{ "StatusArea", "MemoryMonitor", "MagnificationPopUp", "VerticalScrollBar", "MenuBar"}, WindowTitle->"Interactive Curve Fitting - Source", DockedCells->{}, CellContext->Notebook, FrontEndVersion->"8.0 for Microsoft Windows (32-bit) (November 7, 2010)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[627, 23, 145, 3, 70, "Section"], Cell[775, 28, 3700, 64, 70, "Section"], Cell[4478, 94, 28389, 563, 70, "Input", CellID->176273040] }, Open ]], Cell[CellGroupData[{ Cell[32904, 662, 9850, 185, 70, "Output", CellID->90306286], Cell[CellGroupData[{ Cell[42779, 851, 209, 6, 70, "Section"], Cell[42991, 859, 353, 9, 70, "Text"] }, Close]] }, Open ]], Cell[CellGroupData[{ Cell[43392, 874, 209, 6, 70, "Section"], Cell[43604, 882, 107, 3, 70, "Text"], Cell[43714, 887, 118, 3, 70, "Text"], Cell[43835, 892, 60, 0, 70, "Text"], Cell[43898, 894, 88, 2, 70, "Text"] }, Close]], Cell[CellGroupData[{ Cell[44022, 901, 355, 9, 70, "Text", CellGroupingRules->{"SectionGrouping", 25}], Cell[44380, 912, 917, 24, 70, "Text"], Cell[45300, 938, 470, 15, 70, "Text"], Cell[CellGroupData[{ Cell[45795, 957, 815, 24, 70, "Text"], Cell[46613, 983, 1195, 33, 70, "Text"] }, Open ]] }, Open ]] } ] *) (* End of internal cache information *) (* NotebookSignature SSz@3vfdm#k@4DDf45toaVN7 *)