Eksperimentaalfüüsika konspekt

04.03.2011

Koostanud: Tõnu Laas

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Tüstitasdemärgid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Arvutustehnika rakendamine mõõtmistel</td>
</tr>
<tr>
<td>1.1</td>
<td>Analog-digitaalmuundurid. Digitaal-analoogmuundurid</td>
</tr>
<tr>
<td>1.2</td>
<td>Kooidid</td>
</tr>
<tr>
<td>1.3</td>
<td>Diskreeminiimine</td>
</tr>
<tr>
<td>1.4</td>
<td>Interpoleerimine</td>
</tr>
<tr>
<td>1.5</td>
<td>Andurid</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Temperaturuandurid</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Tenosensorid. Rõhuandurid</td>
</tr>
<tr>
<td>2</td>
<td>Tiheda plasma fookuce seade</td>
</tr>
<tr>
<td>2.1</td>
<td>Plasma-fookus seadme ehitus ja tööpõhimõte</td>
</tr>
<tr>
<td>2.2</td>
<td>Plasma-fookus seadme tööcharakteristikud</td>
</tr>
<tr>
<td>2.3</td>
<td>Plasma-fookus seadme rakendusi</td>
</tr>
<tr>
<td>3</td>
<td>Optilised riistad. Mikroskoobid</td>
</tr>
<tr>
<td>3.1</td>
<td>Lääts, mikroskoop, kiirte käik neis ja suurendus</td>
</tr>
<tr>
<td>3.2</td>
<td>Kujutise deformatsioon optilistes süsteemides, mikroskoobi resolutsiooni piirid</td>
</tr>
<tr>
<td>4</td>
<td>Spektroskoopia</td>
</tr>
<tr>
<td>4.1</td>
<td>Spektroskoopia füüsikalised alused</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Aatomite spektrid</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Molekulide spektrid</td>
</tr>
<tr>
<td>4.2</td>
<td>Molekulide spektroskoopia. IR-spektroskoopia</td>
</tr>
<tr>
<td>4.3</td>
<td>Ultraviolett-spektroskoopia</td>
</tr>
<tr>
<td>5</td>
<td>Elektronmikroskoopia</td>
</tr>
<tr>
<td>5.1</td>
<td>Skaneeriv elektronmikroskoop (SEM)</td>
</tr>
<tr>
<td>5.2</td>
<td>Transmissionsäellektronmikroskoop (TEM)</td>
</tr>
<tr>
<td>6</td>
<td>Elektron-paramagneetiline resonants ja tuuma-magnetresonants</td>
</tr>
<tr>
<td>6.1</td>
<td>Elektron-paramagneetiline resonants füüsikaline taust</td>
</tr>
<tr>
<td>6.2</td>
<td>Elektronparamagneetiline resonants (EPR)</td>
</tr>
<tr>
<td>6.3</td>
<td>Tuuma-magnetresonants (TMR)</td>
</tr>
<tr>
<td>7</td>
<td>Laserid. Nende rakendamine uuringutel</td>
</tr>
<tr>
<td>7.1</td>
<td>Interferents. Michelsoni interferomeeter</td>
</tr>
<tr>
<td>7.2</td>
<td>Laserid, nende tööpõhimõte</td>
</tr>
<tr>
<td>7.3</td>
<td>Interferomeetria kasutamine mõõtmistes</td>
</tr>
<tr>
<td>7.4</td>
<td>Laser-Doppler anemomeetria</td>
</tr>
<tr>
<td>8</td>
<td>Muud teemad</td>
</tr>
<tr>
<td>8.1</td>
<td>Fotoelektronkordistid</td>
</tr>
<tr>
<td>8.2</td>
<td>Elektronkordistid</td>
</tr>
<tr>
<td>8.3</td>
<td>Kiirguse registreerimise vahendid</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Stsintilaatorid</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Geiger-Mülleri loendur</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Ionisatsioonikamber</td>
</tr>
</tbody>
</table>
8.4. CCD- ja CMOS-kaamerad..38
8.5. Mass-spektrometria..38
1 Arvutustehnika rakendamine mõõtmistel

1.1. Analoog-digitaalmuundurid. Digitaal-analoogmuundurid

Selleks, et ümbristest saadud signaal arvuti abil töödelda, arvutis säilitada või muundada, tuleb ta eelmalt viia kujule, mis sobib arvutile töötlemiseks. Samuti ka vastupidisel juhul – kui soovime arvuti abil mingid protsesside juhtida või edastada mitme signaali (näiteks heli), peame arvutisignaali teisandama vastavalt soovitule teistsugusele kujule.

Joonis 1.1. Signaali muundamise protsess füüsikalisest signaalist digitaalsignaaliks.

Joonisel 1.2 on toodud signaali töötlemise etapid arvutis numbrilistest koodidest elektriliseks analoogsignaaliks. Kuivõrd digitaalasignaal annab väärtused vaid perioodi T järel, mitte igal suvalisel ajahetkel, tuleb lõpliku signaali kujundamisel elektrilisele signaalile ka vaheväärtused ette anda. Sellega tegeleb signaali ’kujundaja’, taavaliselt lastakse elektriline signaal läbi erinevate filtrite, mis siluvad ka ’nurgad’ maha.
Joonis 1.2. Signaali teisendamine numbrilisest koodist analoogsignaalini.

1.2. Koodid

Nagu teada, on arvutustehnika jaoks vajalik signaali teisendamine kahendkoodiks – teatavaks nullide ja ühtede jadaks. Füüsikalise signaali töötlemise mõttes võib rääkida kahest koodide süsteemist:
- unipolaarkoodid, signaali (pinge) märk on kogu aeg ühesugune;
- bipolaarkoodid, signaali märk on muutuv (positiivne ja negatiivne).

Kümnendarvu teisendamine kahendarvukus.

Tavalise ehk kümnendarvu saab teisendada kahendarvukus vastavalt järgmistele näidetele:

Näide 1.1. Esitame arvu 13 kahe astmete summana:

$$13 = 8 + 4 + 1 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0.$$

Kahendarvukus on on antud esituse 2 astmete kordajad, st 1101. Antud esituses on see kahendarv nö nelja-järguline või neljabitiline – koosneb neljast numbrist. Tavaliselt on arvu bittide arv ette antud.

Kui bittide arv on näiteks 10, siis saab selliselt esitada maksimaalselt arvu $$2^{10} - 1 = 1023$$.

Näide 1.2. Esitame arvu 156 10-bitilise kahendarvuna.

$$156 = 1 \cdot 128 + 0 \cdot 64 + 0 \cdot 32 + 1 \cdot 16 + 1 \cdot 8 + 1 \cdot 4 + 0 \cdot 2 + 0 \cdot 1 =$$
$$= 0 \cdot 2^7 + 0 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0.$$

Seega, kahendarvuna on 156 = 001001100.
ADM töö kirjeldamisel tuleb koode vaadata teisiti – kahendarvu vaadata kui mingi täisarvu murdosasid. (Näiteks mõõdetava suuruse täisdiapasooni murdosasid). Sel juhul on kahendarvu suurim järk 2^1 (1/2), vähim järk 2^n (1/2^n), kus n on teisendusaste. Näiteks 4-bitise ADM korral

$$1011 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = \frac{11}{16}.$$

8-bitise ADM korral

$$10100001 = 1 \cdot 2^7 + 0 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 2 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = \frac{161}{256}.$$

Oletame, et mõõdame temperatuuri anduriga, mille mõõtepäirkond on 100°C ning andur teisendab selle pingeiks, mille korral maksimaalsele temperatuurile vastab pinge 10 V (0°C-le vastab pinge 0 V). Siis 4-bitilise ADM poolt teisendatud suurus 1011 vastab pinge väärtusele

$$\frac{11}{16} \cdot 10V = \frac{110}{16}V = 6.875V$$

ning temperatuuri väärtusele

$$\frac{11}{16} \cdot 100^°C = 68.75^°C.$$

4-bitise ADM-i abil teisendatav temperatuuri määramatus täpsus oleks siis

$$\frac{1}{2^4} \cdot 100^°C = \frac{100^°C}{16} = 6.25^°C.$$

Temperatuuri mõõtmisel sama anduri, kuid 8-bitilise ADM-ga, juhul kui saame tulemuseks kahendarvu 10100001, siis vastab see pingele

$$\frac{161}{256} \cdot 10V = 6.28906V$$

ning temperatuurile

$$\frac{161}{256} \cdot 100^°C = 62.8906^°C.$$

Temperatuuri määramise täpsus oleks

$$\frac{1}{2^8} \cdot 100^°C = \frac{100^°C}{256} = 0.390625^°C \approx 0.39^°C.$$

Tavaliselt antakse selliselt ADM muundurist tingitud mõõtmise määramatuseks kahekordne vähim järk. Teisalt, tihti on anduri poolt võimaldatav mõõtemääramatus märksa suurem ADM poolt tingitud veast.

Grey kood

Grey koodi idee on selles, et kümnendarv muutub nö ühe ühiku võrra, siis kahendarv moodustab ühe biti väärtuse. Tabelis 1.1 toodud esimene arvude esitus kahendarvuna ning Grey koodis. (NB! Kahendarv on kümnendarvuna otseselt seotud nagu näidetes 1.1 ning 1.2, kuid kahendkood on kümnendarvü või ka mingi muu info teataval viisil järjestatud 1 ja 0 rida, koode on erinevaid).

<table>
<thead>
<tr>
<th>Kümnendarv</th>
<th>Kahendarv</th>
<th>Grey kood</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>0011</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>0010</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>0110</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>0111</td>
</tr>
</tbody>
</table>
Grey koodi kasutatakse näiteks nurkade või nihke mõõtmisel, kui kahe kõrvutiasetseva nurga (või nihke väärtsuse) puhul võib muutuda vaid üks biti väärtsus. (Ka üleminekul 15->0 muutub vaid üks biti väärtsus).

Bipolaarkoodid

Tabel 1.2. Erinevate bipolaarkoodide võrdlus. Mõlem a koodi puhul näitab esimene bitt märki – 0 on „+“ ning 1 on „-“...

<table>
<thead>
<tr>
<th>Arv</th>
<th>Murd</th>
<th>Lisakood</th>
<th>Otsekood</th>
</tr>
</thead>
<tbody>
<tr>
<td>+7</td>
<td>+7/8</td>
<td>0111</td>
<td>0111</td>
</tr>
<tr>
<td>+6</td>
<td>+6/8</td>
<td>0110</td>
<td>0110</td>
</tr>
<tr>
<td>+5</td>
<td>+5/8</td>
<td>0101</td>
<td>0101</td>
</tr>
<tr>
<td>+4</td>
<td>+4/8</td>
<td>0100</td>
<td>0100</td>
</tr>
<tr>
<td>+3</td>
<td>+3/8</td>
<td>0011</td>
<td>0011</td>
</tr>
<tr>
<td>+2</td>
<td>+2/8</td>
<td>0010</td>
<td>0010</td>
</tr>
<tr>
<td>+1</td>
<td>+1/8</td>
<td>0001</td>
<td>0001</td>
</tr>
<tr>
<td>0</td>
<td>+0</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>0</td>
<td>-0</td>
<td>(0000)</td>
<td>1000</td>
</tr>
<tr>
<td>-1</td>
<td>-1/8</td>
<td>1111</td>
<td>1001</td>
</tr>
<tr>
<td>-2</td>
<td>-2/8</td>
<td>1110</td>
<td>1010</td>
</tr>
<tr>
<td>-3</td>
<td>-3/8</td>
<td>1101</td>
<td>1011</td>
</tr>
<tr>
<td>-4</td>
<td>-4/8</td>
<td>1100</td>
<td>1100</td>
</tr>
<tr>
<td>-5</td>
<td>-5/8</td>
<td>1011</td>
<td>1101</td>
</tr>
<tr>
<td>-6</td>
<td>-6/8</td>
<td>1010</td>
<td>1110</td>
</tr>
<tr>
<td>-7</td>
<td>-7/8</td>
<td>1001</td>
<td>1111</td>
</tr>
<tr>
<td>-8</td>
<td>-8/8</td>
<td>(1000)</td>
<td>(1000)</td>
</tr>
</tbody>
</table>

Enamuses arvutites kasutatakse lisakoodi, mille korral esimene järk on märgijärk, positiivsete arvude korral hakkab loendamine 0000-st, negatiivsete arvude korral 1000-st arvu suurenemise suunas. Otsekoodi puhul erinevad positiivsed ning negatiivsed arvud vaid esimene järgu võrra.

1.3. Diskreetimine

Anduri või muunduri sisendis on analoogsiga ajas pidev funktsioon \(u(t) \), st ta on määratud iga ajahetke jaoks. Kuivörd arvuti ei suuda salvestada ning töödelda lõpmata suurt hulka

Järgnevas käsitleme diskreetimist matemaatilisest seisukohast. Joonisel 1.3a on toodud algse signaali $x(t)$ kuju. Diskreetiv signaal $p(t)$ antakse (joonisel on toodud 1.3b-l) perioodiga T – ühesuguse amplituudiga impulsid sagedusega $f = 1/T$. Diskreeditud signaal on $x_p(t)$ (joonis 1.3c) – kahe signaali korris. Seega, diskreetimise korral korrutatakse antud analoogsignaal $x(t)$ signaaliga $p(t)$, mis kujutab endast järjestikust ühesuguse signaalide jada. Kokkuvõttes saadud signaal $x_p(t)$ on impulsside jada, mille väärtused on määratud funksiooniga $x(t)$. Signaali $x_p(t)$ nimetatakse ka moduleeritud signaaliks.

![Diagram](image)

Joonis 1.3. Diskreeditud (ehk moduleeritud) signaali tekitamine.

Vastavalt matemaatilisele teoreemile on kindlatel tingimustel ajas pidev funksioon võimalik täielikult esitada (taastada) tema hetkväärtuste abil, mis on võetud võrdsete ajavahemike järel. Selleks peame pisut käsitlema moduleeriva signaali $x(t)$ ning moduleeritud signaali $x_p(t)$ Fourier’ teisendusi.

Meeldetuletus: Fourier’ read ja Fourier’ teisendused.

Olgu meil fikseeritud pikkusega lõigus $t \in [a,b]$ antud funksioon $x(t)$, siis saab selle funktsooni esitada periodiliste funktsoonide summana:

$$x(t) = \sum_{f=-\infty}^{\infty} (x_1(f)\cos(ft) + x_2(f)\sin(ft)),$$
kus \(x_1(f)\) ja \(x_2(f)\) on avaldatav \(x(t)\) kaudu. Antud esitust nimetatakse Fourier’ reaks – funktsiooni esitamine perioodiliste funktsioonide summana. Sarnaselt antud reaga saab teha nn Fourier’ teisenduse – funktsioon \(x(t)\) teisendatavate funktsiooniks \(x(f)\), mis annab algse funktsiooni esituse sageduse funktsioonina, ehk – näitab milliste sagedustega perioodilistest funktsioonidest see koosneb.

Tuues analoogia heliga – inimene registreerib helisid kuni 20000 Hz. Suvalise helilõigu saab anda üksikute helide kombinatsiooniga, kusjuures maksimaalne sagedus oleks 20000 Hz (kõrgemaid pole tänü inimese kõrva omadustele vaja kasutada). Diskreetimise sagedus peab olema maksimaalselt vähemalt 2 korda kõrgem.

Sagedusfiltrid peavad kindlustama taasesituse täpsuse, st peavad maha lõikama liiga suured sagedused. Selleks peab \(f_s > 2 f_M\). Seega, selleks, et salvestatud signaal oleks taasesitamisel täpne, peavad olema täidetud järgmised tingimused:

1) signaal peab hõlmama lõpliku sagedusvahemiku;
2) diskreetimissagedus peab olema vähemalt 2 korda suurem.

Üldjuhul pole neid tingimusi praktikas kerge täita. Anduritest tulev signaal on reaalselt lõpmatus sagedusvahemikus, kuid diskreetimissagedus suurendamist piisavad arvuti kiirus, andmehetuskiirus ja arvuti mäluhald. Seega, täpne reaalsele andmetele töötlemine on võimalik, kuid viga võib erinevate meetoditega vähendada.

Juhul, kui diskreetimissagedus ei ületa kahekordset moduleeriva signaali \(x(t)\) maksimaalset sagedust \(2f_M\), siis hakkavad spektrid kattuma (joonis 1.4d). Näiteks juhul, kui meil on vaadeldav tegelik signaal \(x(t) = \cos(2\pi f_s t)\), siis spektrite kattumise korral algse signaali \(f_s\) asemel esitatakse signaal \(f_s - f_o\). (Efekt on samane sellele, kui filmides hakkavad vankrirattad näitvalt tagurpidi pöörlemite või seisavad paigal).
1.4. Interpoleerimine

Joonisel 1.5 on näha, kuidas digitaalsignaalist kujundatakse analoogsignaal. Arvutites kasutatakse järgmisi võimalusi:

- Null-järku (ehk ühepunktiline) interpolatsioonimeetod. Suuruse x väärtused võetakse kõik ühesuguste ajavahemike järel (joonis 1.5a). Interpoleerimisel võivad tekkida suured vead – erinevate valitud ajavahemike korral võime saada oluliselt erinevat interpoleerimise tulemused.

- Lineaarne ehk kahepunktiline interpolatsioon (joonis 1.5b). Diskreetset väärtused ühendatakse sirgjoonega, täpsus suurem kui eelmisel juhul.

- Interpoleerimine madalsagedusliku filtri abil. Ühepunktilise interpolatsiooni abil saadud signaal lastakse läbi madalsagedusliku filtri. Suured hüpped, mis tekivad ühepunktilise interpolatsiooni korral, silutakse filtriga sujuvamaks signaaliks.

1.5. Andurid

Arvutite abil teostatava andmehõive jaoks mõeldud andurid teisendavad füüsikalse signaali elektriliseks. Põhiline idee – kasutatakse mingit füüsikalist nähtust, mille korral füüsikalse suuruse kasvule vastab pinge proportsionaalne muutus (kasv või kahanemine). St, pinge U sõltub füüsikalisest suurusest x lineaarselt: $U = kx + b$, kus k ja b on konstandid, mis võivad olla nii positiivsed kui ka negatiivsed. Enamasti ei kehti see proportsionaalsuse tingimus kogu võimaliku füüsikalse suuruse vahemiku jaoks, siis kasutatakse vaid mõõtepiirkonda, mille korral proportsionaalsuse tingimus kehtib.

1.5.1. Temperatuuriandurid

Temperatuuriandurid võib liigitada järgmiselt:
1) pooljuhtide pn-siirdel põhinevad termomeetrid;
2) termopaarid;
3) resistiivsed temperatuuriandurid (põhinevad efektit, et temperatuuri tõustes elektrijuhi takistus suureneb) – termistorid ehk termotakistid;
4) ultraheli termomeeter – mõõdetav temperatuuride vahemik 2000-3000°C, viga 30°C.
5) Johnsoni müratermomeeter – 400-1770 K, viga 20K, kasutatakse näiteks tuumareaktorites;
6) tuuma kvadrpolresonantsil põhinev termomeeter: 90-400K, viga 1 mK, kasutatakse ka etalontermomeetrina;
7) induktsioontermomeeter: 25-300°C, viga 3°C.
Lähemalt käsitleme neist kolme esimese tööpõhimõtet.

pn-siirdel põhinevad termomeetrid (pn-termomeetrid).

Pn-termomeetrites kasutatakse pn-siirde omaduste sõltuvust temperatuurist. Andurite väljundsignal sõltub temperatuurist lineaarselt, kuid töötab (nagu kõik andurid) vaid piiratud temperatuurivahemiku korral. Näiteks ränidioodi pinge sõltuvus temperatuurist kirjeldab valem

\[U = \frac{E_s}{e} - \frac{4.6kT}{e}(\ln M - \ln I) , \]

kus \(e \) on elektroni laeng, \(E_s \) on keelutsooni laius \(T=0K \) korral, \(k \) – Boltzmanni konstant, \(M \) – mingi temperatuurist sõltumatu konstant, \(I \) – vool läbi dioodi.

![Joonis 1.6](image)

Joonisele 1.6 on toodud tüüpilised pinge-temperatuuri sõltuvused ränidioodide korral. Tavaline töövahemik on 40-400K. Sel juhul on pinge sõltuvus temperatuurist lineaarne (suure täpsusega lineaarne), temperatuuri edasisel kasvul või kahaneb, kuid ei pruugi see enam nii olla. Kuivõrd pinge on teatav temperatuuri ka voolutugevuse funktsioon, siis temperatuuri täpses määramiseks on vajalik väga stabiilne vooluallikas. Dioodid on oma tööpiirkonnas termistoridest ja termopaaridest suurema täpsusega, kuid need ei või kasutada tugevates magnetväljades. Täpsus: ±1°C; GaAs-dioodil on mõõtemääramatus ±0,002 K töövahemikus 14-300K.

Termopaarid.

Termopaar on seade, mis koosneb kahest eri metallist või metallide sulamist valmistatud juhist, kusjuures üks ühenduskoht peab olema nõu keevitus (kaks metalli kokku keevitatud), ning vahel ka külmjooteks. Termopaari töö põhimõtteskeem on toodud joonisel 1.7a. Kui kaks ühenduskohta on asetatud erineva temperatuuriga kesk kondadesse, tekitatakse genereeritakse ahelas vool. Elektromotoorjõud sõltub temperatuuride vahest. Mingis fikseeritud piirkonnas võib seda sõltuvust lugeda ligikaudu lineaarseks – see ongi antud termopaari tööpiirkonnaks.
Joonisel 1.7b on toodud erinevate termopaaridele iseloomulikud elektromootorjõu-tehastus sõltuvused.

![Diagram](image)

Termopaarides kasutatavad metallisulamid on näiteks:
- kromell – 8-10% Cr, enamus Ni, lisanditena Co, Fe jm;
- alumell – enamus Ni, 1,8-2,5% Al, 1,8-2,2% Mn, 0,85-2,0% Si;
- konstantaan – 39-41% Ni, 1-2% Mn, 0,5% Fe, 0,1% Cr, ülejäänud on Cu.

Kromell-alumell termopaari emj. sõltuvus temperatuurist on peaaegu lineaarne kuni temperatuurini 1000°C. Üldjuhul võib temperatuuri ja elektromootorjõu sõltuvust kirjeldada järgmiselt:

\[T = A_0 + A_1X + A_2X^2 + \ldots + A_nX^n, \]

kus \(A_i \) on konstandid, \(T \) – temperatuur, \(X \) – termopaari väljundpinge. Suurema täpsuse jaoks peaks kasutama elektromootorjõu järgi temperatuuri arvutamiseks igale termopaarile vastavat tabelit. Kuivõrd väljundpinge on väike, siis on on antud mõõtmismeetod erinevate ebatäpsuse ning mürade suhtes tundlik, lisaks sellele on tänų külmjootele termopaaril oma reageerimisaeg (umbes 3 ms).

Termistorid.

Termistoridel e termotakistitel põhinevates andurites kasutatakse asjaolu, et üldjuhul sõltub juhi takistus temperatuurist järgmiselt:

\[R_t = R_0(1 + \alpha_1T + \alpha_2T^2 + \ldots + \alpha_nT^n), \]

kus \(R_0 \) on takistus 0°C korral, \(\alpha_i \) on konstandid ning \(n \) sõltub täpsusest, mida vajatakse. Kui temperatuuride vaheemik on suhteliselt väike: 0-100°C, siis piisab lineaarsest lähendusest, st vaid esimesest kahest liikmest. Paljudel juhtudel kasutatakse plaatina ja roodiumit, eriti madalatel temperatuuridel, sest nende temperatuuritundlikkus on väga suur. Joonisel 1.8 on toodud tüüpilised takistus-temperatuuri sõltuvused.

Termistorides kasutatakse ka mitmeid sulameid, -sulfide, seleniiide, ning ka pooljuhte. Viimaseid iseloomustab negatiivne \(\alpha_i \), st temperatuuri tõusul takistus väheneb.
1.5.2. Tensosensorid. Rõhuandurid

Kõige lihtsamad nihkeandurid on potentsiomeetrilised andurid, mis tuginevad pingejaotusele potentsiomeetri kontakti nihkumisel.

Resistiivsed tensoandurid

Resistiivsed tensoandurid on mõõteseadised, mis muudavad oma takistust kontrollitaval objektil tekitatud deformatsiooni tõttu. Need võib jagada kahe klassi:
- metall- ja pooljuhtandurid;
- elastsed takistid.

Metall- ja pooljuhtandurid on vajalikud väikeste deformatsioonide mõõtmisel ning juhul, kui deformeerimiseks on vaja üsna suurt jõudu, deformatsiooni suurus \(x < 20 \, \mu m \). Neid andureid kasutatakse jõu, rõhu, kiirenduse mõõtmisel, mille korral deformatsioon võib ulatuda kuni 50%-ni keha algsetelt pikkusest. Selliseid andureid kasutatakse staatiliste ja dünaamiliste mõõtmisside tegemisel, eriti näiteks meditsiinis.

Tööpõhimõte.

Juhi takistus on \(R = \frac{\rho l}{S} \), kus \(\rho \) on juhi eritakistus, \(l \) – juhi pikkus, \(S \) – ristlõikepindala.

Deformatsioonil muutub juhi pikkus ning ristlõige. Tänään deformatsioonile muutub ka keha struktuur, mis viib eritakistuse muutmiseeni. Kokkuvõttes keha takistuse suhteline muutus:

\[
\frac{\Delta R}{R} = \frac{(1 + 2\sigma)\Delta l}{l} + \frac{\Delta \rho}{\rho},
\]

kus

\[
\sigma = -\frac{\Delta d}{d} : \frac{\Delta l}{l}
\]

on Poissoni koefitsent. \(d \) on juhi diameeter. \(\frac{\Delta d}{d} \) on juhi diameetris suhteline muutus ning \(\frac{\Delta \rho}{\rho} \) on juhi eritakistuse suhteline muutus.

Juhul, kui deformatsioon mõjub otseselt andurile, domineerivad piesoelektrilised efektid. Üldjuhl on pooljuhtandurite takistuse sõltuvus deformatsioonist 50-70 korda suurem kui metallidel, samas on pooljuhtidel negatiivne temperatuurist sõltuvuse koefitsent.
Piesoelektrilised andurid.

Piesoelektrilisi andureid on kahe tüüpi:
- aktiivsed – deformatsiooni muutumine tekitab voolu; pideva deformatsiooni korral voolu ei tekitata;
- passiivsed – deformeeriv jõud muudab materjali elektrilisi omadusi.

![Diagram of piezoelectric devices](image)

Joonis 1.8. Piesoelektriliste andurite rakendamise erinevad võimalused. a) rakendav jõud ja voolu suund on omavahel risti; b) rakendav jõud ja voolu suund on samasihilised.

Piesoelektrikutes tekib deformatsioonil laengute ümberjaotumine. On võimalikud 3 erinevat tüüpi andurid:
- deformeeriv jõud on risti genereeritud voolu (või teisel juhul – välise vooluallika poolt genereeritud voolu) suunaga (joonis 1.8a);
- deformeeriv jõud on samasihiline voolu suunaga (joonis 1.8b);
- deformeeriv jõud tekitab mehaanilise nihke - erinevatele piesoelektriku osadele mõjub erinev jõud.

Nimetatud tensoandurid, mis tuginevad mehaanilise pinge muutmisele ja mõõtmisele, võimaldavad mõõta nii jõudu, rõhku kui ka kiirendust, samuti nihkeid.
2. Tiheda plasma fookuse seade

2.1. Plasma-fookus seadme ehitus ja tööpõhimõte

Energiad, millega iseloomustatakse plasma osakesi.

Plasma osakeste energiat antakse väga sageli eV-des (elektronvoltides). 1 eV on energia, mille saab osake laenguga 1,6-10⁻¹⁹ C läbides potentsiaalide vahe 1 V. 1 eV = 1,6-10⁻¹⁹ J. Öeldes, et aine energia on 1 eV, siis tähendab see, et tema temperatuur on 11700 K.

Plasma-fookus-seadme ehitus

Plasma-fookus seadme (PF-seade) ehitusskeem on toodud joonisel 2.1.

Joonis 2.1. a) Plasma-fookus-seadme ehitusskeem; b) plasma-kambris olevad elektroodid – keskel on anood, seda ümbritsevad vardakujulised katoodid.
PF-seadme kondensaatorid laetakse kõrge pingeni U (kuni 60 kV), lülitü sulgemisel tekib hõreda gaasi keskkonnas olevate elektroodide vahel läbilöök. Läbilöök tekib tavaliselt mööda isolaatori pinda, harvem ka selle pinna lähedal olevas gaasis. Plasmat hakkab läbima vool, mille ümber tekib magnetvälja magnetilise induktsooniga \vec{B}. Tänu Lorentzi jõule $\vec{F} = q\vec{v} \times \vec{B} = \vec{j} \times \vec{B}$, mis mõjub laetud osakestele, hakatakse ioone ning elektrone (kuigi nende laengud on erinevad, liiguvad nad ka vastupidistes suundades, tänu sellele on mõjuv jõud mõlemale samasuunalne) isolaatorist kauemalas lükkama, elektroodide otse poole. Teataval hetkel on plasmakihid (joonisel 2.1. a – kihid erinevatel ajahetkedel on vastavalt 1,2 ja 3) lükatud annoodi ette kokku nn pinchiks – tihedaks plasmasambaks.

Plasmakihis olevate ioonide-elektronide energia on umbes 0,1-1 keV. Kui plasmakihid on jõudnud pintšini, surutakse tänu magnetväljale osa plasmast väga tihealt kokku töstes selle temperatuuri oluliselt kõrgemaks – osakeste energiat on suurusjärgus 100 keV. Mõned nanosekundid pärast pinchi pääsevad kergemad ning kiiremad elektrone selles mikrovangilisest välja ning nende kiir on suunatud annoolile. Umbes 10 ns hiljem pääsevad sellest välja ka ioonid, mis suunatakse anoodist eemale – elektronidele vastast suunda. Joonisel 2.2 on toodud skeem aeglase plasmat leviku teatamiseks.

![Plasma diode](image.png)

2.2. Plasma-focused seadme töökarakteristikud

PF-seadme koguenergia üheks ‘lasuks’ on enam-vähem võrdne kondensaatorite patarei koguenergiaga. Kui kondensaatorite mahtuvus on C ning pinge U, siis $W = \frac{CU^2}{2}$.

Joonistel 2.2 on toodud PF-seadmes tekkinud voolutugevuse graafikud. Voolutugevuse I järgik langeb algusest 2.2. b) ning tingitud plasma takistuse hüppelisest kasvust pinchi ajal. Hüppe suurus iseloomustab ka kiiretele ioonidele antavat koguenergiat. Kuivõrd voolutugevuse muutus ei pruugi olla suur, siis kasutatakse uuringuteks ka dl/dt – kui voolutugevuses I on ka väikese hüpe olemas, siis dl/dt-s on hüpe märksa suurem Joonis 2.3. on toodud dl/dt graafikud.
2.3. **Plasma-fookus seadme rakendusi**

Juhul, kui töögaasiks on deuteerium, tekivad seadmes 2,45 MeV-sed neutronid, seda sõltumata kondensaatorite hulgast ja koguenergiast. Seega saab seadmeid kasutada näiteks neutron-spektroskoopias või nagu röntgenaparaadi analoogina, rakendades läbivate kiirtena neutroneid.

Teine rakendusvaldkond – materjaliuuringud. PF-seade on nö odav seade, mis võimaldab tekitada osakesi energiaga kuni 100 keV (ja tegelikult ka prootonid ning neutronid energiatega suurusjärgus 2,45 MeV). PF-seade võimaldab nende ioonidega mõjutada materjale erinevate ajavahemike τ jooksul – 10 ns – kuni mikrosekundid. Teisalt on pinnale langev energiavoog q väga suur ning nn kahjustustegur – $q \tau^{1/2}$ võib olla väga suur.
Materjaliuuringute valdkonnas saab PF-seadet rakendada kahel erineval režiimil – pinchiga ning ilma. Kui pinchi ei ole, siis tekitatakse vaid nõa aeglaste, 0,1-1keV-lise energiaga plasmalaine, mis mõjutab selle ette pandud materjali. Pinchi korral tuleb arvestada, et pinchist lähtuv kiirete ioonide (energiaga 100 keV) suundub kitsas nurgas ning see hakkab leivat umbes 10 ns hiljem kui algne aeglase plasma pilv. Joonisel 2.4 on toodud skaneeriva elektronmikroskoobiga tehtud pildid ränikristallist ning ränist, mida on kiiritatud deuteeriumiplasmaga seadmel PF-seadmega PF-12. Joonisel 2.5 on toodud pildid rauasulami pinnastruktuurist. Roostevaba terast on kiiritatud deuteeriumiplasmas, seda on tabanud vähemalt 2 kiirete ioonide kimpu. Võib märgata nii lõhkenud mulle kui ka veel lõhkemata mulle, mis on sulami pinna all. Ka antud juhul on metallipind täielik sultanud, tahkestumisel on tekinud lõhkenud mullide piirkond, samuti on tekinud praod tänu kiirele jahtumisele.

Joonis 2.4. a) c) kiirete ioonidega kiiritatud räni. On näha, et räni on sultanud ning siis uuesti jahtumisel on moodustunud kitsamad kimbud.

b) d) kiiritamata (või aeglase plasmaga – see vajab täiendava tähendust) kiiritatud räni.
Joonis 2.5. Roostevaba terase pind plasmaga
a) töötlemata ning b) töödeldud juhul.

c) plasmaga töötlemata pind; d) e) deuteeriumplasmaga töödeldud pind.
3. Optilised riistad. Mikroskoobid

Siinkohal antakse lühijulevade tavalistest optilistest seadmetest – eelkõige mikroskoobi tööpõhimõtest ning vaadeldavate objektide suurusest.

3.1. Lääts, mikroskoop, kiirte käik neis ja suurendus

Kõige lihtsam optiline süsteem on lääts+ silm. Läätses toimub suurendus vastavalt skeemile joonisel 3.1.

![Joonis 3.1](image)

Lääätse nurksuurendus on \(M = \frac{\theta'}{\theta} = \frac{\tan \theta'}{\tan \theta} \), kus N on parima nägemise kaugus (20-25 cm). \(\tan \theta = \frac{h}{d_0} \). Ideaalsel juhul asetseb ese peaaegu läätse fookuses (siis tundub ese asetsevat lõpmaduses ning silm on võimalikult vähem pinges), st \(d_0 \approx f \). Seega saame luubi nurksuurenduse jaoks seose

\[
M = \frac{h}{f} \frac{N}{h} = \frac{N}{f}.
\]

Joonisel 3.2 on toodud kiirte käik mikroskoobis.

![Joonis 3.2](image)

Joonis 3.2. ob – objektiiv, ok – okulaar, S – silm, \(h_0 \) – eseme kõrgus, \(h_1 \) – objektiivi poolt tekitatud kujutise kõrgus, \(d_0 \) – eseme kaugus objektiivist, \(d_1 \) – kujutise kaugus objektiivist, \(f_{ob} \) – objektiivi fookuskaugus, \(f_{ok} \) – okulaari fookuskaugus, \(l \) – objektiivi ja okulaari vaheline kaugus. Okulaari poolt tekitatud lõplik kujutis, mida näeb inimese silm ei pruugi tekkida teisel pool objektiivi, vaid võib olla tekitatud ka nende vahele – inimese silmast parima nägemise kaugusele.
Mikroskoobi suurendus tuleb kahe läätse – objektiivi ning okulaari suurendustest:
\[M = M_{ok} M_{ob} \, . \]
Okulaari suurendus on analoogiline luubi suurendusega – kui silm on lõdvestunud, siis
\[M_{ok} = \frac{N}{f_{ok}} \, , \]
kus \(f_{ok} \) on okulaari fookuskaugus. Objektiivi suurendus
\[M_{ob} = \frac{h_1}{h_0} = \frac{d_1}{d_o} \approx \frac{l - f_{ok}}{d_0} \, , \]
kus \(l \) – okulaari ja objektiivi vaheline kaugus, \(h_0 \) – eseme kõrgus, \(h_1 \) objektiivi poolt tekitatud kujutise kõrgus, \(d_0 \) – eseme ja objektiivi vaheline kaugus, \(d_1 \) – objektiivi poolt tekitatud kujutise ning objektiivi vaheline kaugus. Siin arvestasime, objektiivi poolt tekitatud kujutis peab tekkima peaaegu okulaari fookusesse. Kui okulaari fookuskaugus on väike võrreldes läätsede vahelise kaugusega, siis \(l - f_{ok} \approx l \). Teisalt, suurema suurenduse saamiseks peab ese asuma objektiivi fookusele võimalikult lähedal, st \(d_0 \approx f_{ob} \). Seega saame mikroskoobi suurenduseks
\[M = \frac{N \cdot l}{f_{ok} \cdot f_{ob}} \, . \] (3.2)

3.2. Kujutise deformatsioon optilistes süsteemides, mikroskoobi resolutsiooni piirid

Eelpool tehtud tuletuskäik kehtib juhul, kui tegemist on ideaalsete õhkeste läätsedega. Arvestasime ka, et \(\theta \approx \tan \theta \). Tänü läätse löplikule paksusele on optilistes süsteemides järgmised kujutise deformatsioonid:
- läätse aberratsioon – erinevatest läätse osadest tulnud kiired koonduvad peateljel erinevates punktides (nn sfääriline aberratsioon);
- kooma – punkt kujutatakse mitte punktiks, vaid ringiks, keraks või ellipsiks; fokaaltasand on köver, mitte tasane jms,
- kromaatiline aberratsioon – eri värvi kiired murduvad läätses erinevalt, tänü sellele koonduvad erinevates punktides – seda aitavad korvata lisaläätsed – lisaks kumeratele läätsedele kasutatakse ka nõgusaid või poolnõgusaid läätsesid.

Läätse resolutsiooni piirid

Läätse resolutsioon on võime eristada kahte lähedalasuvat punkti. Läätse resolutsioonile panevad põhimõttelised piirid kaks asja – aberratsioon – punkt kujutatakse ringiks ning kahe lähedalasuva punkti kujutised (ringid) hakkavad kattuma; teine – difraktsioon, msi on tingitud valguse lainelistest omadustest. Läätse servad toimivad ringi (või piluna), millelt valguslained difrageeruvad.

Difraksiooni korral pilult laiusega \(D \) on pilu keskel valguse intensiivsuse maksimum, esimene miinimum on määratud seosega \(\theta = \sin \theta = \frac{\lambda}{D} \), kus \(\lambda \) on valguse lainepikkus (vt joonis 3.3a).

Juhul, kui tegemist on difraksiooniga ringikujuliselt avalt (nagu ka läätse servadest), siis on tsentraalse laigu poolnurkliaisu (vt joonis 3.3b) \(\theta = \frac{1,22 \lambda}{D} \). Esimese miinimumi asukoht annab ette ka läätse nurkresolutsiooni. Et mikroskoobis on ese fookuse lähedal, siis \(\theta \approx \tan \theta = \frac{s}{f} \), st
\[s = f \cdot \theta \]. Seega, \(s = \frac{1.22\lambda f}{D} \), kus \(D \) on objektiivi läätse diameeter. Läätse resolutsioon on

\[s = \frac{1.22\lambda}{2\sin \alpha} = \frac{0.61\lambda}{\sin \alpha} \]. Üldisemal juhul, kui ese paikneb mingis valgust murdvas keskkonnas, siis

\[s = \frac{0.61\lambda}{n \sin \alpha} = \frac{0.61\lambda}{NA} \],

(3.3)
kus \(n \) on keskkonna murdumisnäitaja. Suurust \(NA = n \sin \alpha \) nimetatakse läätse apertuurarvuks. Võttes \(\lambda \approx 600 nm \), \(\sin \alpha \approx 1 \) ning \(n=1.5 \), saame läätse lahutusvõimeks 0,2 \(\mu m \).
4. Spektroskoopia

4.1. Spektroskoopia füüsikalised alused

4.1.1. Aatomite spektrid

Kõige lihtsam aatom on nn vesinikusarnane aatom, mille tuuma ümber tiirleb vaid üks elektron (täpsemalt – tuuma ümbritsevas elektronikhis on vaid üks elektron). Elektroni potentsiaalne energia tuuma poolt tekitatud elektriväljas on

\[U = -\frac{Ze^2}{r}, \]

kus \(e = 1.6 \times 10^{-19} \text{C} \) on elektroni laeng, \(r \) – elektroni kaugus tuuma tsentrist, \(k = \frac{1}{4\pi\varepsilon_0} \) on konstant. Schrödingeri võrrandi lahendamisel ilmneb, et elektron saab aatomis olla vaid olekutes, millel on fikseeritud energiatasemed. Vesinikusarnase aatomi puhul

\[E_n = -\frac{m_e^2Z^2}{2\hbar^2}, \]

kus \(m_e \) on elektroni mass. Aatom kiirgab või neelab footoni vaid üleminekul ühelt energiatasemelt teisele. Nagu kvantmehaanikast tead a, iseloomustab elektrone aatomis peale peakvantarvu \(n \), mis määrab ära energiataseme (ja energiaväärtuse) ka impulsivälimaž

\[L = \hbar \sqrt{l(l+1)}, \]

kus \(l=0,1,...,n-1 \); \(l \) on nn orbitaalkvantarv. Impulsimomendi projektsioon etteantud suunal on

\[M = \hbar m, \]

kus \(m=-l,...,0,...,l \); \(m \) on magnetkvantarv. Elektroni spinnkvantarv võib omandada kaht väärtust \(s = -\frac{1}{2}, \frac{1}{2} \). Elektron võib läbida vaid selliseid siirdeid, mille korral \(\Delta l = \pm 1 \) (see on tingitud footoni spinnist \(s=1 \)). Seega, kui näiteks vesiniku aatomis on elektron madalaimal energiatasemel, st \(n=1 \), siis \(l=0 \), siis üleminekud kõrgematele energiatasemetele võivad toimuda näiteks orbitaalidele \(n=2, l=1 \) või \(n=2, l=-1 \); \(n=3, l=1, l=-1 \) jne. Analoogiliselt ka elektroni siiretel madalamatele orbitaalidele peab orbitaalkvantarv \(l \) muutuma ühe väärtusega mullumaga ühe väärtusenel.

![Joonis 4.1. Elektroni lubatud siirdealad vesiniku aatomis.](image1)

![Joonis 4.2. Mõned elektroni lubatud siiretest saanud energiatasemed naatriumi aatomis.](image2)

Üldiselt tulenevad optilised spektrid väliskihtide elektronide üleminekutest. Kui aga põrgetele või muul moel aatomi poolt omandatud energia on nii suur, et ergastada sisekihi elektron, siis elektroni tagasilangemisel sellele kihile eraldub k vant, mille energia on UV- või rõntgenkiirguse skaalas.

\[\sqrt{\omega} = C(Z - \sigma) \tag{4.5} \]

kus Z – elemendi järjenumber, σ on konstant, mis on sama kõigi sama seeria joonte jaoks, σ=1 K-seeria jaoks, σ=7,5 L-seeria jaoks jne. C on sama kõigi elementide α,β- γ-joonte jaoks.

4.1.2. Molekulide spektrid

Molekule hoiavad koos ühised väliskihtide elektronid. Seetõttu on karakteristik rõntgenkiirgus sama nii aatomite jaoks kui ka ühendites esinevate raskete aatomite jaoks. Molekulide ühise väliskihi elektronidel on oma potentsiaalne energia. On võimalik ergastada elektrone ning sellega saadakse kiirgumis-needumisspektroid. Kui erinevalt aatomitest on molekulidel võimalik veel vönkda – aatomid võnguvad üksteise suhtes. Kvantmehaanikast on teada, et kvantmehaanilisel ostsillaatoril on võimalikud energiaväärtused \(E = \left(\nu + \frac{1}{2} \right) \hbar \omega \), kus \(\nu \) on täisarv. E võimalikud väärtused sõltuvad potentsiaaliga juhul, kuid antud juhul on oluline, et ka võnkeenergia saab muutuda vaid portsjonite kaupa. Peale vönkumise on molekulil olemas ka pöörlemisenergia. Pöörlemisenergia: \(E_p = \frac{1}{2} I \omega^2 = \frac{M^2}{2I} \), kus I on süsteemi inertsmoment massakeset lābiva telje suhtes ning M – süsteemi impulssmoment.

Kvantmehaanikast:
\[M = \hbar \sqrt{J(J + 1)} , \]

kust \(J \) on impulssmomendi kvantarv. Seega saame pöörlemisenergia jaoks avaldise

\[E_r = \frac{\hbar^2 J(J + 1)}{2I} . \]

St, ka pöörlemisenergia saab muutuda vaid diskreetselt. Üldiselt \(\Delta E_r < \Delta E_v < \Delta E_e \), kus \(\Delta E_r \) on vönkumisenergia ning \(\Delta E_v \) elektroni üleminekute energia. Tänu sellele on molekulidel joonte asemel ribad – nn ribaspektrid (vt joonis 4.3).

Joonis 4.3. Näha on erinevate aatomite spekrid. Ulalt esimene on vesiniku aatomi kiirgumisspekter, alt teine on molekulaarse vesiniku kiirgusmisspekter. Nagu näha, on spektri suurema lainepikkusega osas (punane) ribade arv märgatavalt suurem võrreldes atomaarse vesinikuga. Alt esimesel on toodud neeldusmisjooned Päikese atmosfääris. (http://quantummechanics.ucsd.edu/ph130a/130_notes/node51.html)

4.2. Molekulide spektroskoopia. IR-spektroskoopia

Molekulide spektroskoopia on põhiliselt neeldusmisspektroskoopia – toimub laias spektrososas kiiratud kiirguse neeldumine molekulaarses keskkonnas, peamiselt vönke- ehk vibratsioonienergia järgi. Eristatakse kaht spektroskopiat – IR-spektroskoopia (infra-red -
infrapuna) kiirguse lainepikkustel 2500-25000 nm, ning NIR-spektroskoopia (near infra-red – lähi-infrapuna) lainepikkustel 1000-2500 nm.

Molekulide erinevate funktsionaalrühmade karakteristikud sagedused on toodud näiteks veebilehtedel:

http://infrared.als.lbl.gov/IRBands.html
http://webbook.nist.gov

Kuivõrd molekulide spektrid on neeldumisspektrid, siis on siin olulised 2 küsimust – millist kiirgusallikat kasutada, ning kuidas kiirgust detekteerida.

Sobivad kiirgusallikad – kuumad kehad, kuid tänu soojuskiirguse spektrile on infrapunakiirguse intensiivsus madal. Kasutatakse näiteks ZrO$_2$-Y$_2$O$_3$-ThO$_2$ segust varrast 1900$^\circ$C juures, varrast kuumutatakse elektrivoolu abil. kasutatakse ka ränikarbiidist varrast 1200-1400$^\circ$C juures, nikromtraati jm.

Detektorite probleem – tänu kiirguse väikesele lainepikkusele ei saa kasutada elektronkordistide, detektoritel peab olema kõrge tundlikkus suures lainepikkuste vahemikus ning väike reaktsiooniaeg. Detektorid jagatakse järgmiselt:
- termilised;
- piesoelektrilised – seade paikneb kahe kondensaatroikihi vahel, temperatuuri tõttu hakkab andma elektriimpulssse;
- fotojuhtivusel tuginevad detektorid;
- (pneumaatlised) fotoakustilised detektorid.

Joonis 4.4. a) Detektori nihke (vertikaalteljel) muutumine aja (horisontaaltelg) jooksul; b) nihkele vastav Fourier teisendus – energia sõltuvus laineavast.
FT IR spektroskoopia nõuab väga kiireid detektoreid ning väga kiireid arvuteid.

4.3. Ultraviolettspektroskoopia

5. Elektronmikroskoopia

5.1. Skaneeriv elektronmikroskoop (SEM)

Tavaliste, optiliste, mikroskoopide lahutusvõime piir on umbes valguse lainepikkusega sames suurusjärgus ehk umbes 300 nm (200 nm). Nagu kvantfüüsikast teada, on ka osakestel lainelised omadused, st ka elektronidel on de Broglie lainepikkus. Osakese impulss ja lainepikkus on omavahel seotud:

\[p = \frac{mv}{c} = \frac{h}{\lambda}, \quad (5.1) \]

kus arvestasime, et osakese impulss on seotud energiaga järgmiselt: \(p = \frac{E}{c} \). Seega saame osakese de Broglie lainepikkuse jaoks avaldise

\[\lambda = \frac{h}{mv}. \quad (5.2) \]

Leiame elektronmikroskoobi lahutusvõime analoogiliselt optilise mikroskoobiga. Eeldame, et elektrone kiirendatakse elektriväljas potentsiaalide vahes \(U \), siis saavad nad energia

\[E = eU = \frac{mv^2}{2}. \quad (5.3) \]

Seega saamelahutusvõimeks

\[\lambda = \frac{h}{\sqrt{2Uem}}. \]

Võttes kiirendavaks pingeks näiteks \(E=30000 \text{ V} \), leiame, et elektroni de Broglie lainepikkus on \(\lambda = 7 \cdot 10^{-12} \text{ m} \). Kasutame nüüd seost (3.3). Kui optilise mikroskoobi korral oli apertuurarv

\[NA = n \sin \alpha \approx 1, \quad \text{siis elektronmikroskoobi korral on} \quad NA=0,02. \]

Seega saame lahutusvõimeks

\[d \approx 2 \cdot 10^{-10} m = 0,2nm, \text{ mis on} \quad 10000 \text{ korda parem kui optilisel mikroskoobil.} \]

Kiirendava pinge suurendamisel on võimalik suurendada ka elektronmikroskoobi lahutusvõimet.

SEM-i põhimõtteskeemi on toodud joonisel 5.1. Filamente kasutatakse elektronide allikana, mida kiirendatakse kuni 50000 kV-ses (isegi kuni 100000 kV-ses) elektriväljas. Kiirendatud elektronide kimp fokusieritakse poolide abil, st magnetvälgas, väiksesse punkti diameetriga umbes 0,4-10 nm. Skaneerimispoolide abil suunatakse elektronide kimpu rida-realt kuni uuritav piirkond on 'läbi käidud', samaaegselt muutub ka detektori skaneerimissamm.

Objektini jõudnud elektronid hajuvad korduvalt aatomite elektrokihtidel ning pidurduvad uuritava näidise nn vastastikmõju piirkonnas, mis on 100-5000nm paks. Interaktsoonikihi paksus sõltub elektronide energiat ning näidise aatominumbrist ja materjali tihedusest. Vastastikmõju tõttu peegelduvad materjalist kõrge energiaga elektronid (peegeldunud e hajunud elektron – energia samas suurusjärgus primaarsetele elektronide energiaga), välja
lüüakse ka madala energiaga sekundaarelektrone (enegria alla 50 eV). Lisaks tekib elektronide pidurumisel aatomites röntgenkiirgus, aatomite madalamate tasemete elektronide ergastamisel ka karakteristilik röntgenkiirgus.

Joonis 5.1. Skaneeriva elektronmikroskoobi põhimõttesseem.

Peegeldunud elektrone hulk sõltub materjali – mida suurem on materjali aatommass, seda rohkem elektrone tagasi peegeldatakse. Seetõttu kasutatakse peegeldunud elektronide režiimi näidise koostise kindlakstegemisel ning keemiliste elementide jaotuse hindamiseks uuritaval pinnal.

Joonis 5.2. Pildid terasesulamist SEM-ga a) sekundaarsete elektronide režiimil saadud pilt; b)
peegeldunud elektrone režiimil saadud pilt – tumedad laigud näitavad suurema aatommassiga elementide asukohta.

Sageli kasutatakse elektronmikroskoopide juures ka röntgenkiirguse detektorit – tänu tekkivad karakteristlikule röntgenkiirgusele võimaldab see täpselt määrata uuritava näidise keemilist koostist.

5.2. Transmissioonelektronmikroskoop (TEM)

Läbivalgustava ehk transmissioon-elektronmikroskoopi (TEM) abil uuritakse õhukeste objektide (paksus kuni 50 nm) struktuuri, elemetseid ja struktuurseid koostisi, füüsikalisi omadusi. TEM-is antakse näidist läbivatele elektronele energia kiirendades neid pinges 100 kV-300 kV. Võimsate TEM-de abil on võimalik elektronele anda isegi kuni 3 MeV-ne energia.

![TEM-i põhimõtteline skeem, elektrone kiire tee TEM-s.](image)

Joonis 5.3. TEM-i põhimõtteline skeem, elektronide kiire tee tee TEM-s.

TEM-s kasutatakse kujutise saamisel kahte režiimi. Enamlevinud on nö ampituudrežiim, milles kasutatakse otse levinud ning elastselt hajunud elektrone. Pilt saadakse diffrageerumata elektrone abil (joonis 5.4a) – mida heledam on pildi osa, seda väiksem on sellele osale vastava objekti optiline tihedus, sest enamus elektrone on lennanud otse, ilma hajumata. Tumedamas osas saadakse kujutis juba rohkem elastselt hajunud elektrone tõttu. TEM-i kasutatakse väga palju bioloogias ja meditsiinis rakkude uuringutel.

Teine võimalus kujutise saamiseks on elektronide diffraktsiooni tõttu. Tänu elektroni laineistele omadustele diffrageeruvad need objekti aatomiteelt ja kristallvörelt. Saadakse nn Fraunhoferi diffraktsiooni kujundid, mis Fourier’ pöördteisenduse abil annavad objekti esialgse kujutise. Pilt elektronide diffraktsiooni kohta kristallis on toodud joonisel 5.4b.
Peale ülalnimetatud võimaluste on TEM korral sarnaselt SEM-ga võimalik kasutada objekti koostise määramiseks röntgenkiirgust. Nimelt, ka antud juhul ergastavad elektronid madalamate elektronkihtide elektoone aatomis ning tekitatakse karakteristilik röntgenkiirgus, mida on võimalik registreerida TEM-i paigutatud lisadetektori abil.

![TEM pilt](image)

6. Elektron-paramagneetiline resonants ja tuuamagnetresonants

6.1. Elektron-paramagneetilise resonantsi füüsikaline taust

Elektron-paramagneetiline resonants (EPR) ehk elektron-spinresonants (spektroskoopia) on teatav meetod keemiliste elementide kindlakstegemiseks. Analüüsida saab elemente ja aineid, milles on üks või rohkem paaritut (paariliseta) elektoni. St, on võimalik uurida orgaanilisi ja mitteorgaanilisi aineid, milles on metalliline ioon. EPR põhimõtteide on sarnane tuuamagnetresonantsi (TMR) ideega.

Füüsikaline taust on pärit kvantmehaanikast. 1913.a. avastati nn Starki efekt – kui kiirgav gaas panna elektrivälja, siis toimub spektrijoonte lõhenemine. Iga n-s taseme spektrijoonest lõheneb n-1 alamspektrijooneks. See toimub tänul orbitaalkvantarvule \(l \) – tänul välisele elektriväljale toimub gaasi aatomite ümberorienteerumine välises elektriväljas ning üleminekad erinevate \(l \) tasemete korral annavad pisut erineva energiga kvante.

1896.a. avastas P. Zeeman naatriumi spektros, et kui kiirgusallikas paiknes välises staalilises magnetväljas, siis jagunesid kiirgusspekttri osad mitmekes. Elektromagnetismist on teada, et osakesel magnetmomendiga \(\vec{\mu} \) on välises magnetväljas energia \(U = -\vec{\mu} \vec{B} \). Elektroni
magnetmoment on $\vec{\mu} = -\frac{e}{2m_e} \vec{L}$, kus \vec{L} on (aatomi ümber orbiidil liikuva) elektroni impulssmoment. Võib kirjutada

$$U = -\vec{\mu} \vec{B} = -\mu B \cos \alpha = -B \mu_n,$$

(6.1)
kus μ_n on elektroni impulssmomendi projeksioon magnetvälja suunale. Kuivõrd elektroni impulssmomendi võimalikud väärtused on $L = h\sqrt{l(l+1)}$ (vt. (4.3)). Järellikult on elektroni orbitaalmagnetmomendi absoluutväärtused diskreetset ning võivad omandada väärtusi

$$\mu = \frac{e\hbar}{2m_e} \sqrt{l(l+1)} = \mu_n \sqrt{l(l+1)}.$$

(6.2)

Magnetmomendi projeksioon etteantud suunale:

$$\mu_m = -\frac{e}{2m_e} M_m = -\frac{e}{2m_e} m\hbar = -\mu_n m,$$

(6.3)
kus m on magnetkvantarv. Seega on tänu väлиsele magnetväljale elektroni poolt omandatud energia

$$\Delta E = -\mu_n B m.$$

(6.4)

Energiatase E_{nl} lõhestub $2l+1$ üksteisest võrdsel kaugusel olevaks energiatasemeeks. Antud süsteemides on võimalikud vaid üleminekud, mille puhul magnetkvantarv m muutub ühe või vörra või jääb samaks: $\Delta m = 0, \pm 1$. Joonisel 6.1. on kujutatud lubatud üleminekud kahel erineval juhul.

Joonisel 6.1. Spektrijoone ringsagedusega ω_0 jagunemine kolmeks. a) Üleminekud orbitaalilt $l=1$ orbitaalile $l=0$. b) Üleminekud orbitaalilt $l=2$ orbitaalile $l=1$. Joonisel 6.1 toodud üleminekutel kiiratakse kvandid energiaega $\omega_0 \pm \Delta \omega_0$, ja $\Delta E = \hbar \omega_0$, $\Delta E = \hbar (\omega_0 \pm \Delta \omega_0)$. Ülaltoodud nähtust, mil iga spektrijoon jaguneb välimises magnetväljas kolmeeks, nimetatakse lihtsaks Zeemani efektiks.

On ka nn keeruline Zeemani efekt. Keerulise Zeemani efekti korral tekib iga väiksema spektrijoone asemele kolm. Lisanduvad jooned sagedusega $\Delta \omega = \Delta \omega_0 \frac{r}{q}$, kus r ja q on väikesed täisarvud. See on tingitud asjaolust, et tänü spinnile on koguimpulssmoment suurem või väiksem. Aatomi koguimpulssmoment on
kus S võib omandada kõiki väärusi 0 kuni $N^* \frac{1}{2}$, kus N on elektronide arv aatomis. Kui elektrone on paarisarv, siis võib S omandada vaid täisarvulisi väärusi. Kui N on paaritu arv, siis võib S omandada kõiki poolarvulisi väärusi vahemikus 0 kuni $N^* \frac{1}{2}$. Magnetvälgas prettseerist aatomi resultantimpulssvektor väärustega $M_j = h\sqrt{J(J+1)}$ ümber välja suuna, kusjuures projektsioon sel suunal on $M_{jj} = \hbar m_j$ ning m_j võib omandada väärusi $m_j = -J, -J+1, ..., -1, 0, 1, J$.

Ajas keskmistatud magnetmoment on võrdne $\vec{\mu}_j = \vec{\mu}_B gJ$ võrra, kus $g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$ on Lande tegur. Kui $S=0$, siis $J=L$ ning $g=1$; kui $L=0$, siis $J=S$ ja $g=2$. Tegelikult on g tänu relativistlikele efektiidele kahest pisut erinemang ning $g=2,0023$.

6.2. Elektronparamagneetiline resonants (EPR)

EPR meetodi idee tugineb spektrijoonte peenstruktuuri mõõtmisele. Elektroni üleminekutel on elektronide energia muutunud tänu välisele magnetvälgale

$$\Delta E = hf = g\mu_B B_0$$ \hspace{1cm} (6.5)

võrra, kus magnetiline induksioon B_0 on $0,3-0,35$ T. Kasutatakse mikrolainekiirguse piirkonnas $9-10$GHz.

![Joonis 6.2. Signaali intensiivsuse ning selle tuletise sõltuvust magnetilisest induksioonist. 1Gs = 0,001T. (Wikipedia). Ülemine joon vastab neeldunud signaali intensiivsusele, alumine joon neeldunud signaali tuletisele.](image-url)

Joonis 6.3. EPR uuringud erinevate p- ja n-juhtivusega räni näidiste korral. Vertikaalteljel on neeldunud signaali tuletise intensiivsus, horisontaalteljel magnetvälja tugevus. Neeldumisspektri hüpe 3350 Oe juures vastab vesiniku aatomitele H

6.3. *Tuuma-magnetresonants (TMR)*

TMR-i idee on mõneti samane EPR-i ideega. Antud juhul kasutatakse asjaolu, et ka tuual on magnetmoment (EPR-i korral kasutati asjaolu, et aatomil on magnetmoment tänu aatomit ümbritsevale elektronpilvele). Aatomituuma magnetmoment

\[
\vec{\mu} = \gamma \vec{P} = \gamma \sqrt{I(I+1)} \hbar, \quad (6.6)
\]

kus, \(\vec{P}\) on nurgamoment ehk tuuma impulssmoment. Magnetkvantav \(m\) määrab ära konkreetse tuuma oleku. Tuuma impulssmoment projektsioon välisse välima suunale saab omada väärtusi

\[
P_z = mh, \quad (6.7)
\]

\(m = -I, -I+1, ..., 0, ..., I-1, I\). Seega võib \(m\) omada 2I+1 väärtust.

Tuuma maksimaalne impulssmoment on määratud spinnkvantavuga \(I\). Spinnkvantarvu väärtus tuleneb nii prootonite kui ka neutronite spinnide summast. Spinnkvantarvu määramiseks võib tuua välja järgmise reegli:

a) kui nii aatominumber \(A\) kui ka massiarv \(Z\) on paarisarvulised, siis tuuma spinnkvantarv \(I = 0\). (Näiteks \(^{16}_8\)O, \(^{12}_6\)O, jne).

b) Massiarv on paarisarvuline, siis spinnkvantarv omab polarvulisi väärtusi: \(I=1/2, 3/2, 5/2, ...,\). TMR-i jaoks on olulised tuumad, mille korral spinnkvantarv on \(1/2\). (Näiteks \(^{1}_1\)H, \(^{13}_6\)C, jne).
c) Aatomnumber on paarituarviline, kuid massiarv on parasalviline. Siis on tuuma spinkvant täisarvuliste nullist erinevate väärtustega. \(I = 1, 2, 3, \ldots \) (Näiteks \(^2\text{H} \), \(^6\text{O} \), \(^{14}\text{O} \), jne).

Vördetegur \(\gamma \) ehk tuuma güromagneetiline suhe näitab kui tugevate magneetiliste omadustega tuum on.

Analoogiliselt EPR-ga, muutuvad välise magnetvälja rakendamisel erineva spinniga tased energeetiliselt erinevaks, erinevus on

\[\Delta E = h\gamma B_0 \quad (6.6) \]

Tuum võib minna üle olekust \(m = -1/2 \) olekusse \(m = 1/2 \) kiirates või neelates kvandi. Kuivõrd \(m \) ei ole null, siis tuuma impulsmomendi projektsioon ei ole null ning impulsmomendi vektor pretsesseerib ümber välise magnetvälja vektori. Kui kvant kiiratakse või neelatakse, siis selle sagedus on

\[f = \gamma B_0, \quad (6.7) \]

pretsesseerimise ringsagedus \(\omega = 2\pi f' \).

Üks võimalusi spektromeetrias aine kindlaks tegemiseks on neeldumis-kiirkumiisspektre kindlakstegevuse nagu EPR korral. Ka siin on kaks võimalust – välise fikseeritud magnetilise inductsiooni korral mõjutatakse ainet elektromagnetkiirgusega ning leitakse neeldumisspekter. Joonisel 6.4 on toodud resonantssagedused erinevatel tuumadel fikseeritud magnetilise inductsiooni (B=1T (?)) korral.

![Joonis 6.4. Tuumade resonantssagedused fikseeritud välise magnetvälja korral.](image)

Teine võimalus on fikseeritud sageduse korral muuta magnetvälja tugevust, sel juhul saadakse analoogiline sõltuvus joonisel 6.3 tooduga. Selline metoodika on aeganõudev, enamasti kasutatakse seda \(^1\text{H} \) jaoks.

Tänapäeval enamlevinud ja huvipakkuvam võimalus NMR signaali saamine tuumade relaksioonist tingitud ajalise spektrist. Reaktsiooniaeg tingib spektrijoonte lainenemise – see näitab, kui tugevalt on antud aatom (näiteks vesiniku aatom) seotud uuritava molekuliga; spektrijoone laiuse ja suhtelise nihke põhjal võib teha kindlaks, millise molekuliga on tegemist. Spektrijoonte nihe on tingitud asjaolust, et molekulis varjestavad tuuma peale aatomi enda
elektronide ka molekuli ühised elektronid. Erinevate molekulide nihe on teada ning uuritava segu koostise saab selle järgi kindlaks määrama. Spektrojoonte lainemiseks hoitakse proovi püsiamagnetväljas magnetilise induksiooniga \(B = 2.4-21.2 \) T. Proovi kiiritatakse ühele või mitmele kindlale sagedusele. Saadakse signaali ajaline kahanemine (relaktsioon) – sumbuvussignaal. Saadud signaalile tehakse kiire Fourier teisendus (FFT) ning selle järgi saab kindlaks teha, millise sagedusega ning kui suure intensiivsusega osadest see signaal koosneb.

TMR-i on sobiv rakendada gaasidele ning vedelikele. Tahkete ainete korral on spektrojoonte laienemise põhjuseks tuumade omavahelised vastasikmõjud ning kiiritamisest tingitud laienemist on keerulisem hinnata.

7. Laserid. Nende rakendamine uuringutel

7.1. Interferents. Michelsoni interferomeeter
Interferents.

7.2. Laserid, nende tööpõhimõte
jk

7.3. Interferomeetria kasutamine mõõtmistes
jl

7.4. Laser-Doppler anemomeetria

8. Muud teemad

8.1. Fotoelektronkordisti
Mitmetes seadmetes rakendatakse foto- ehk fotoelektronkordistit signaali registreerimiseks või võimendamiseks. Seda kasutatakse näiteks elektromikrokoopides, spektrometrites, EPR-i korral, neutronite detektorites jm.

Sekundaaremissiooni efekt (avastajad Austin ja Stark 1902.a) – elektronide voog, mis langeb metalli pinnale, lööb sellelt välja rohkem elektrone kui pinnale langes. Fotokordistit põhimõttesseem on toodud joonisel 8.1. Foton lõöb fotokatoodilt välja elektroni. Dünooldidel on positiivne pinge, kusjuures igal järgneval dünoolid on eelmisest körgem pinge võrreldes...

Joonis 8.1. Fotokordisti põhimõtteskeem.

Fotokatoodi materjal sõltub pealelangevate footonite energiast, ka katoodi ees oleva akna materjaliga saab piirata registreeritavate footonite lainepikkust. Võimalikud materjalid – Cs, KCsSb, RbCsSb jne.

8.2. Elektronkordist

Elektronkordisti tööpõhimõte on samane fotoelektronkordisti tööpõhimõttele, kuid algsele elektroodile langeb mitte footon, vaid laetud osake, seetõttu on seda võimalik kasutada ka ionide registreerimiseks.

Joonis 8.2. Lehter-tüüpi elektronkordist. Lehtri pind on kaetud pooljuhiga ning pinge lehtri pinnal muutub ühtlaselt.

8.3. Kiirguse registreerimise vahendid

8.3.1. Stsintilaatorid

Stsintilaator on materjal, mis emiteerib footoni(d), kui seda ioniseeriva kiirgusega kiiritada. Tavaliselt on emiteeritud valgus nähtava valguse või UV-kiirguse piirkonnas. Emiteeritud kiirguse tekkeks on mitu erinevat võimalust. 1) Kiirgus tekitatakse umbes 10⁻₈ s pärast ergastamist – fluorestsentsi nähtus. 2) Kui elektronid aatomites lähevad metastabiilisesse olekusse (tänu keelureeglitele), siis tekib fosforesents ning kiirgus tekitatakse märgatavalt hiljem vürreldes fluorestsentsiga.

Stsintillaatorite puhul on olulised parameetrid efektiivsus, lineaarsus ja lühike nn poolestusaeg (aeg, mille jooksul on pooled ergastatud elektronid ära kiiranud), sest pärast ergastamist on nn 'pimeaeg' – ajavahemik, mil uut ergastamist ei saa tekkida.

Stsintillaatorites kasutatakse erinevaid materjale, sõltuvala uuritavatest kiirgustest. Näiteks BaF₂ – kahekomponeentne – kiire ja aeglase komponendiga; Na(Tl), ZnS(Ag) jne, orgaanilised plastikmaterjalid jne. Parimatel stsintillaatoritel on signaalide ajaline lahutusvõime alla 1 ns ning väga madal müratase. Stsintillaator põhimõtteskeem on toodud joonisel 8.3.

![Diagram](image)

Joonis 8.3. Läbi akna satuvad stsintillaatorisse ioniseerivad osakesed, mis ergastavad aatomeid. Aatomitest emiteeritakse footoneid, mis fotokatoodilt löövad välja elektrone.

Stsintillaatotreid kasutatakse enamasti koos fotokordistitega, mis võimaldab registreerida ka nõrku signaale. Joonisel 8.4 on toodud neutroneite detektoriga mõõdetud signaal PF-12-lt. Esimene tipp vastab X-kiirgusele, teine neutronitele. Arvestades, et röntgenkiirgus levib valguse kiirusega, võimaldab antud meetod määrama neutronite energiat, mis on antud juhul 2,45 MeV.

![Graph](image)
8.3.2. Geiger-Mülleri loendur

8.3.3. Ionisatsioonikamber

Joonis 8.4. Vertikaalteljel on stsintillaatori abil registreeritud kiirgusimpulsi inteniviisus. Tipp 2,1 mikrosekundil peal vastab röntgenkiirgusele, 2,4 mikrosekundini juures registreeritud neutronitele.
Ionisatsioonikambri täienduse korral on pinge 250-750 V ning algsed ioonid ja elektronid ioniseerivad teisi aatomeid tekitades selliselt laetud osakeste kaskaadid. Tekkiv pingeimpulss on võrdeline ionisatsiooni määraga.

8.4. CCD- ja CMOS-kaamerad

8.5. Mass-spektrometria